Skip to main content

Advertisement

Log in

Effect of Production Process Parameters on Manufacture and Properties of Porous Ceramic Based on Al2O3

  • Published:
Refractories and Industrial Ceramics Aims and scope

Al2O3 based porous ceramic (APC) is prepared successfully by a polymer sponge replica method.1 The main raw material used is white fuzed corundum powder. The effect of zirconium dioxide content (0 – 12 wt.%), sintering temperature (1450 – 1550°C), and holding duration (2 – 6 h) on APC phase composition, macrostructure, microstructure, and properties after sintering, ultimate strength in compression and thermal shock resistance, are studied. Porous ceramic based on Al2O3, exhibiting an ultrafine microstructure, may be prepared by adding ZrO2. It has been detected that APC properties depend to a considerable extent on production process parameters. APC exhibiting considerable porosity (88.9%), good ultimate strength in compression (0.52 MPa), and good thermal shock resistance (19 thermal cycles) may be obtained by firing a specimen containing 8 wt.% ZrO2 at 1500°C and holding for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, “Processing routes to macroporous ceramics: a review”, J. Am. Ceram. Soc., 89(6), 1771 – 1789 (2006).

    Article  Google Scholar 

  2. Y. S Han, J. B. Li, B. Chi, and Z. H. Wen, “The effect of sintering temperature on porous silica composite strength”, J. Porous Mater., 10(1), 41 – 45 (2003).

    Article  Google Scholar 

  3. X. W. Zhu, D. L. Jiang, and S. H. Tan, “Reaction bonding of open cell SiC–Al2O3 composites”, Mater. Res. Bull., 36(11), 2003 – 2015 (2001).

    Article  Google Scholar 

  4. W. Wei, X. M. Cao, C. Tian, and J. S. Zhang, “The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics”, Micropor. Mesopor. Mat., 112(1 – 3), 521 – 525 (2008).

    Article  Google Scholar 

  5. S. Akpinar, I. A. Altun, and K. Onel, “Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics”, J. Eur. Ceram. Soc., 30(13), 2727 – 2734 (2010).

    Article  Google Scholar 

  6. S. Deville, E. Saiz, and A. P. Tomsia, “Ice-templated porous alumina structures”, Acta Mater., 55, No. 6, 1965 – 1974 (2007).

    Article  Google Scholar 

  7. Y. Zhang, K. C. Zhou, Y. X. Bao, and D. Zhang, “Effects of rheological properties on ice-templated porous hydroxyapatite ceramics”, Mater. Sci. Eng. C, 33(1), 340 – 346 (2013).

    Article  Google Scholar 

  8. F. Z. Zhang, T. Kato, M. Fuji, and M. Takahashi, “Gelcasting fabrication of porous ceramics using a continuous process”, J. Eur. Ceram. Soc., 26(4 – 5), 667 – 671 (2006).

    Article  Google Scholar 

  9. F. K Yang, C. W. Li, Y. M. Lin, and C. A. Wang, “Effects of sintering temperature on properties of porous mullite/corundum ceramics”, Mater. Lett., 73, 36 – 39 (2012).

  10. D. Y. Li and M. S. Li, “Porous Y2SiO5 ceramic with low thermal conductivity ”, J. Mater. Sci. Technol., 28(9), 799 – 802 (2012).

    Article  Google Scholar 

  11. A. Preiss, B. Sua, S. Collins, and D. Simpson, “Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting”, J. Eur. Ceram. Soc., 32(8), 1575 – 1583 (2012).

    Article  Google Scholar 

  12. J. K. Efavi, L. Damoah, D. Y. Bensah, D. D. Arhin, and D. Tetteh, “Development of porous ceramic bodies from kaolin deposits for industrial applications”, Appl. Clay Sci., 6566, 31 – 36 (2012).

    Article  Google Scholar 

  13. J. G. Bai, X. H Yang, Y. G. Shi, S. C. Xu, and J. F. Yang, “Fabrication of directional SiC porous ceramics using Fe2O3 as pore-forming agent”, Mater. Lett., 78, 192 – 194 (2012).

  14. Y. Kim, K. Min, J. Shim, and D. J. Kim, “Formation of porous SiC ceramics via recrystallization”, J. Eur. Ceram. Soc., 32(13), 3611 – 3615 (2012).

    Article  Google Scholar 

  15. K. Sehwrtzalder and A. V. Somers, US Patent 3090094, Method of manufacturing porous ceramic (1963).

  16. M. R. Nangrejo, X. J. Bao, and M. J. Edirisinghe, “Preparation of silicon carbide – silicon nitride composite foams from preceramic polymers”, J. Eur. Ceram. Soc., 20(11), 1777 – 1785 (2000).

    Article  Google Scholar 

  17. X. M. Yao, Y. Yang, X. J. Liu, and Z. R. Huang, “Effect of recoating slurry compositions on the microstructure and properties of SiC reticulated porous ceramics”, J. Eur. Ceram. Soc., 33(15 – 16), 2909 – 2914 (2013).

    Article  Google Scholar 

  18. M. Chen, J. K. Yu, and N. Wang, Refractories and Fuel Combustion [in Chinese] Metallurgical Industry Press, Beijing (2005).

    Google Scholar 

  19. Z. Y. Chen, Chemical Thermodynamics of Refractories [in Chinese] Metallurgical Industry Press, Beijing (2005).

    Google Scholar 

  20. W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, “Mechanical properties of Al2O3 / ZrO2 composites,” J. Eur. Ceram. Soc., 22(16), 2827 – 2833 (2002).

    Article  Google Scholar 

  21. E. Geuzens, S. Mullens, J. Cooymans, J. Luyten, F. Lemoisson, K. Y. Sastry, L. Froyen, J. D’Haen, M. K. Van Bael, H. Van den Rul, and J. Mullens, “Synthesis and mechanical and tribological characterization of alumina-yttria stabilized zirconia (YSZ) nanocomposites with YSZ synthesized by means of an aqueous solution-gel method or a hydrothermal route”, Ceram. Inter., 34(5), 1315 – 1325 (2008).

    Article  Google Scholar 

  22. J. Y. Yu, X. D. Sun, Q. Li, and X. D. Li, “Preparation of Al2O3 and Al2O3 – ZrO2 ceramic foams with adjustable cell structure by centrifugal slip casting”, Mater. Sci. Eng. A, 476(1 – 2), 274 – 280 (2008).

    Article  Google Scholar 

  23. C. X. Wang, Y. X. Zhang, and Q. Yu, ZrO 2 Composite Refractories [in Chinese] Metallurgical Industry Press, Beijing (2005).

    Google Scholar 

  24. Z. H. Zhou, Z. H. Wang, Y. Yi, J. S. Lan, S. Q Jiang, and G. Wang, “Experimental study on impact resistance and mechanical characteristics of low-temperature sintered Al2O3–ZrO2 composites with anti-sandwich structure”, Powder Technol., 256, 239 – 243 (2014).

  25. W. Pabst, E. Gregorová, and I. Sedlárová, “Preparation and characterization of porous alumina – zirconia composite ceramics”, J. Eur. Ceram. Soc., 31(14), 2721 – 2731 (2011).

    Article  Google Scholar 

  26. J. K. Han, F. Saitob, and B. T. Lee, Microstructures of porous Al2O3 – 50 wt. % ZrO2 composites using in-situ synthesized Al2O3 – ZrO2 composite powders,” Mater. Lett., 58(16), 2181 – 2185 (2004).

    Article  Google Scholar 

Download references

This work was supported by the Fundamental Research Funds for the Central Universities (grant No. N120402006), the Educational Commission of Liaoning Province of China (grant No. L2012079), the National Natural Science Foundation of China (grant No. 51274057) and the National High-Tech R&D Program (863 Program) of China (grant No. 2013AA030902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beiyue Ma or Ying Li.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 43 – 50, December, 2014.

1Polymer sponge is impregnated with ceramic slurry, dried, and sintered at a specific temperature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Li, Y., Liu, G. et al. Effect of Production Process Parameters on Manufacture and Properties of Porous Ceramic Based on Al2O3 . Refract Ind Ceram 55, 573–580 (2015). https://doi.org/10.1007/s11148-015-9768-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-015-9768-6

Keywords

Navigation