Skip to main content
Log in

Effect of Milling and Sintering Temperature of TaC–TaB2 Composite on Lattice Parameter and C/Ta Ratio

  • Published:
Refractories and Industrial Ceramics Aims and scope

The lattice parameter of TaC–TaB2 balk prepared by mechano-chemical and spark plasma sintering (SPS) was investigated by the Nelson–Riley method. In this study, TaC–B4C powder was milled for 3, 6, 9, 12 hours and sintered by spark plasma sintering. The lattice parameter and C/Ta ratio of TaC–TaB2 was calculated by the Nelson–Riley method and the Storms relation. In this research, TaC–B4C powder was reacted and produced TaC–TaB2 composite. Phase formation and powder morphology during milling and sintering were examined using different analysis techniques including XRD and FE-SEM. The lattice parameter of the powders was increased by milling time and sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. T. H. Squire and J. Marschall, “Material property requirements for analysis and design of UHTC components in hypersonic applications,” J. Eur. Ceram. Soc., 30(11), 2239 – 2251 (2010).

    Article  Google Scholar 

  2. F. Monteverde, A. Bellosi, and L. Scatteia, “Processing and properties of ultra-high temperature ceramics for space applications,” Mater. Sci. Eng. A, 485(1), 415 – 421 (2008).

    Article  Google Scholar 

  3. D.-H. Kwon, S.-H. Hong, and B.-K. Kim, “Fabrication ofultrafine TaC powders by mechano-chemical process,” Mater. Lett., 58(30), 3863 – 3867 (2004).

    Article  Google Scholar 

  4. X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Densification and mechanical properties of TaC-based ceramics,” Mater. Sci. Eng. A, 501(1), 37 – 43 (2009).

    Google Scholar 

  5. G. Hagemann, H. Immich, T. V. Nguyen, and G. E. Dumnov, “Advanced rocket nozzles,” J. Propuls. Power, 14(5), 620 – 634 (1998).

    Article  Google Scholar 

  6. R. G. Munro, “Material properties of titanium diboride,” J. Res. Natl. Inst. Stand. Technol., 105(5), 709 – 720 (2000).

    Article  Google Scholar 

  7. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, “Refractory diborides of zirconium and hafnium,» J. Am. Ceram. Soc., 90(5), 1347 – 1364 (2007).

    Article  Google Scholar 

  8. B. Mehdikhani, S. R. Bakhshi, “Synthesis and spark plasma sintering of TaC–TaB2 nanocomposites,” J. Optoelectron. Adv. Mater., 16(11 – 12), 1311 – 1316 (2014).

    Google Scholar 

  9. X. Zhang, G. E. Hilmas, W. G. Fahrenholtz, and D. M. Deason, “Hot pressing of tantalum carbide with and without sintering additives,” J. Am. Ceram. Soc., 90(2), 393 – 401 (2007).

    Article  Google Scholar 

  10. Ye. F. Liu. L and Y. Zhou, “Microstructure and mechanical properties of spark plasma sintered TaC0.7 ceramics,” J. Am. Ceram. Soc., 93(10), 2945 – 2947 (2010).

  11. R. Steinitz, “Mechanical properties of refractory carbide at high temperature,” In: Nuclear Applications of Nonfissionable Ceramics, Ed. by A. Boltax and J. H. handwerk, Am. Nucl. Society, Hinsdale, IL, 1966, pp. 75 – 100.

  12. E. Rudy, D. P. Harmon, Figure 8956-system Ta-C. Phase Eguilibria Diagrams, Phase Diagrams for Ceramics, Vol. X. Boride, Carbides, and Nitrides, Ed. by A. E. Mchale, The American Ceramic Society, Westerville, OH, 1994.

  13. E. K. Storms, “The Refractory Carbides”, in: Refractory Materials, ASeries of Monographs, Ed. by J. L. Margrave, Academic Press Inc., New York,1967, p. 94.

  14. X. Zhang, G. E. Hilmas, W. G. Fahrenholtz, and D. M. Deason, “Hot pressing of tantalum carbide with and without sintering additives,” J. Am. Ceram. Soc., 90(2), 393 – 401 (2007).

    Article  Google Scholar 

  15. X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Densification and mechanical properties of TaC-based ceramics,» Mater. Sci. Eng. A, 501(1), 37 – 43 (2009).

    Google Scholar 

  16. J. B. Nelson and D. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc., 57(3), 160 (1945).

    Article  Google Scholar 

  17. G. Williamson, and W. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., 1(1), 22 – 31 (1953).

    Article  Google Scholar 

  18. C. Suryanarayana and M. G. Norton, x-ray Diffraction: A Practical Approach, Springer, New York and London (1998).

    Book  Google Scholar 

  19. A. E. McHale, System B-Ta-C. Isothermal Section at 1750°C. Phase Equilibria Diagrams, Phase Diagrams for Ceramists, Westerville, OH, The American Ceramic Society, Vol. X. Borides, Carbides, and Nitrides (1994).

Download references

Acknowledgement

The authors are indebted to the Material Department in Malek-e-ashtar University of Technology, which supplied the raw materials for this research, and to the Building and Construction Department of Standard Research Institute for equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mehdikhan.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 50 – 55, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdikhan, B., Borhani, G.H., Bakhshi, S.R. et al. Effect of Milling and Sintering Temperature of TaC–TaB2 Composite on Lattice Parameter and C/Ta Ratio. Refract Ind Ceram 57, 507–512 (2017). https://doi.org/10.1007/s11148-017-0013-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-017-0013-3

Keywords

Navigation