Skip to main content
Log in

Analysis of the status and prospects for the commercial use of fiber-reinforced silicon-carbide ceramics

  • Economics and Market
  • Published:
Refractories and Industrial Ceramics Aims and scope

This article presents a broad survey and analysis of the main trends in the international market in regard to the manufacturing technologies, areas of application, and levels of demand for structural ceramics with an SiC matrix that has been reinforced with carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu. D. Tret’yakov, “Ceramics: past, present, and future,” Sorosovskii Obrazovatel’nyi Zh., No. 6, 53–59 (1998).

  2. S. Saito, Fine Ceramics, Elsevier, Tokyo (1988).

    Google Scholar 

  3. Advanced Ceramics: U.S. Industry Study with Forecast to 2010 and 2015. December 2006.

  4. A. P. Garshin and S. G. Chulkin, Reaction-Sintered Silicon-Carbide Structural Materials. Physico-Mechanical and Tribological Properties [in Russian], Polytechnic University, St. Petersburg (2006).

  5. A. P. Garshin and Yu N. Vil’k, “Effect of certain technological parameters on the formation of the structure of materials based on reaction-sintered silicon carbide,” Ogneupor. Tekh. Keram., No. 8, 2–8 (1996).

  6. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, et al., Ceramics for Machine Construction [in Russian], Nauchtekhlitizdat, Moscow (2003).

    Google Scholar 

  7. M. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering, Springer, Berlin (2007).

    Google Scholar 

  8. D. P. Stinton, “Synthesis of fiber-reinforced C-SiC composites by chemical vapor infiltration,” Am. Ceram. Soc. Bull., 65(2), 347–350 (1986).

    CAS  Google Scholar 

  9. Ceramic Matrix Composites: Technologies and Global Markets (2010).

  10. S. T. Mileiko, “High-temperature composites with a ceramic matrix,” Deformats. Razrushenie Mater., No. 5, 21–29 (2011).

  11. W. Krenkel (editor), Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Wiley-VCH Verlag, Bayreuth (2008).

    Google Scholar 

  12. Growth Opportunities in Carbon Fiber Composites Market 2009 – 2014, June 2009.

  13. V. I. Kostikov and F. N. Varenkov, Superhigh-Temperature Composite Materials [in Russian], Intermet Inzhiniring, Moscow (2003).

    Google Scholar 

  14. A. P. Garshin, “Friction materials based on fiber-reinforced composites with carbon and ceramic matrices for braking systems,” Novye Ogneupory, No. 9, 54–60 (2008).

  15. A. P. Garshin, Silicon Carbide. Single Crystals, Powders, and Products Based on Them [in Russian], Polytechnic University, St. Petersburg (2006).

  16. ”Modern end seals in chemical equipment,” Nasosy: Novosti Rynka, No. 2(5), March – April (2006).

  17. P. B. Narotam (editor), Handbook of Ceramic Composites, Kluwer Academic Publishers (2005).

  18. B. Heidenreich, “Carbon fibre reinforced SiC materials based on melt infiltration,” 6th Int. Conf. on High Temperature Ceramic Matrix Composites, New Delhi (India) (2007).

  19. www.compositesworld.com/articles. K. Wood. Friction product:carbon fiber stopping power (2007).

  20. P. G. Karandikar, “A rapid processing method for large, low-expansion, light-weight mirrors,” Presentation on Technology Days in the Government Mirror Development. 17 – 19.08.2004, Huntsville, Alabama.

  21. R. Reidel, G. Mera, R. Hauser, et al., “Silicon-based polymer-derived ceramics: synthesis properties and applications — a review,” J. Ceram. Soc. Jpn, 114, No. 6, 425–444 (2006).

    Article  Google Scholar 

  22. P. A. Storozhenko, A. M. Tsyrlin, S. P. Gubin, et al., “New oxygen-free pre-ceramic polymers—nanometallocarbosilanes and nano-sized fillers — unique materials for improving the strength and oxidation resistance of carbon-graphites and stabilizing high-strength and high-temperature ceramics,” Seria Kriticheskie Tekhnol. Membrany, No. 4(28), 68–74 (2005).

  23. Z. Guobin, Interface modification of carbon fiber reinforced SiC composites prepared by polycarbosilane impregnation-pyrolysis method, Nagasaki University, Nagasaki (1998), p. 129.

  24. www.worldcarfans.com. Porsche ceramic composite brake.

  25. W. Krenkel, B. Heidenreich, and R. Renz, “C/C-SiC composites for advanced friction systems,” Adv. Eng. Mater., 4, No. 7, 427–436 (2002).

    Article  CAS  Google Scholar 

  26. V. I. Rumyantsev, T. N. Genusova, R. L. Sapronov, et al., “Analysis of current trends and prospects regarding the use of ceramic-matrix materials in anti-friction friction pairs,” Khim. Tekh., No. 11, 38–44 (2010).

    Google Scholar 

  27. V. Kulik, A. Nilov, V. Rumyantsev, et al., “Microstructure and properties of 2D-Cf/C-SiC (Si) composites prepared by the silicon melt infiltration process,” Abstracts Book International Conference on Modern Materials and Technologies (CIMTEC 2006), Acireale, Sicily, Italy, June 4 – 9 (2006).

  28. www.dlr.de/bk/en/…6930_read-10076, Process Technique and Quality Assurance.

  29. www.docstoc.com/…/Ceramic-Disk-TechF, Ceramic Brake Disks.

  30. J. Rosenlocher, G. Deizinger, R. Waninger, et al., “High performance brake disks made of fiber-reinforced ceramics,” Materialwiss. Werkstoff, 38, No. 11, 922–926 (2007).

    Article  Google Scholar 

  31. G. H. Jang, K. H. Cho, S. B. Park, et al., “Tribological properties of C/C-SiC composites for brake disk,” Met. Mater. Int., 16(1), 61–66 (2010).

    Article  CAS  Google Scholar 

  32. A. Albers, A. Arslan, and M. Mitariu, “Clutches using engineering ceramics as friction material,” Materialwiss. Werkstoff., 36(3/4), 102–107 (2005).

    Article  CAS  Google Scholar 

  33. P. Xiao, Z. Li, and X. Xiong, “Preparation, properties, and application of C/C-SiC composites fabricated by warm compacted-in situ reaction,” J. Mater. Sci. Technol., 26(3), 283–288 (2010).

    Article  CAS  Google Scholar 

  34. El-Hija Hussam Abu,W. Krenkel, and S. Hugel, “Development of C/C-SiC brake pad for high-performance elevators,” Int. J. Appl. Ceram. Technol., 2(2), 105–113 (2005).

    Article  Google Scholar 

  35. A. B. Bogza, “Evaluation of the service properties of parts of friction couples in textile machinery made of siliconized graphites,” From materials of the journal “Tekstil’naya Promyshlennost, www.nabivka.ru/a201.shtml.

  36. Russian Federation Patent No. 2297992. Composite Material and a Product Made of It. S. S. Solntsev, D. V. Grashchenkov, N. V. Isaeva, G. V. Ermakova, and S. S. Solntsev. No. 2005127958. Sub. 08.09.05; Publ. 27.04.07.

  37. Russian Federation Patent No. 93009135. Method of Making a Hermetic Centrifugal Chemical Pump. F. V. Malyshenko, N. A. Kokoulin, V. P. Voronov, V. V. Nikolaev, E. N. Panteleimonov, A. V. Uglitskikh, and Yu. K. Osorgin. No. 93009135/29; Sub. 17.02.93; Publ. 20.09.95.

  38. S. A. Kolesnikov, G. A. Kravetskii, and S. V. Bukharov, “Technology for building combination chemical reactors from carbon-ceramic composites and structural graphite,” Tekhnol. Mashinostr., No. 4 (58), 5–8 (2007).

    Google Scholar 

  39. V. V. Gusev, L. P. Kalafatova, and A. D. Molchanov, “Use of technical ceramics and sitalls in friction elements,” Donbass-2020: Science and Engineering-Manufacturing: Proc. Sci.-Tech. Conf. Donetsk (2002), pp. 5–10.

  40. O. N. Shagalova, “Verification of the properties of silicon-carbide composites for making production equipment wear-resistant” Gornyi Informats.-Analit. Byulleten’, No. 6, 119–126 (2010).

  41. Russian Federation Patent No. 2000123759. Composite Material and Method of Producing It. U. Grubber, M. Haine, and A. Kintsle, No. 2000123759; Sub. 15.09.00. Publ. 10.08.02.

  42. V. E. Bevz, O. R. Berezhnaya, T. V. Kritskaya, et al., “Structure, properties, and use of carbon materials and composites based on carbon and silicon-carbide matrices,” Proc. Second All-Russian Conf. on Nanomaterials “Nano-2007” (2007), p. 108.

  43. A. Dolata-Grosz, W. Hufenbach, J. Sleziona, et al., “Design, manufacture and technological verification of SiC / C composite stirrer,” Arch. Mater. Sci. Eng., 39(1), 29–37 (2009).

    Google Scholar 

  44. Lightweight Ballistic Materials [in Russian], A. Bkhatnagara (editor), Tekhnosfera, Moscow (2011).

  45. I. Yu. Kelina, V. V. Lenskii, I. A. Golubeva, et al., “Impact-resistant ceramic based on silicon carbide,” Ogneupor. Tekh. Keram., No. 1/2, 17–24 (2010).

  46. M. K. Aghajanian, V. N. Morgan, J. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” Ceram. Trans., 134, 527–539 (2002).

    CAS  Google Scholar 

  47. V. I. Kulik, A. S. Nilov, and L. I. Solov’ev, “Main methods of improving the protective properties of armor elements based on ceramics,” Proc. Int. Sci.-Tech. Conf. Pyatye Utkinskie Chteniya, St. Petersburg (2011), pp. 199–201.

  48. www.frontkit.spb.ru, Bullet-Proofing of Armored Vests: Concise Survey of Problems and Solutions (2010).

  49. B. Heidenreich, W. Krenkel, and B. Lexow, “Development of CMC-materials for lightweight armor,” Ceram. Eng. Sci. Proc., 24(3), 375–381 (2003).

    Article  CAS  Google Scholar 

  50. www.multotec.com, MOH-9, Armour ceramics.

  51. www.sglgroup.com/…/ballistic…ceramics/index.html.

  52. U.S. Patent No. 2009/0324966. Multilayer Armor Plating, and Process for Producing the Plating. Benitsch Bodo. Sub. 29.11.04; Publ. 31.12.09.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 2, pp. 43 – 52, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garshin, A.P., Kulik, V.I. & Nilov, A.S. Analysis of the status and prospects for the commercial use of fiber-reinforced silicon-carbide ceramics. Refract Ind Ceram 53, 62–70 (2012). https://doi.org/10.1007/s11148-012-9463-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-012-9463-9

Keywords

Navigation