Skip to main content
Log in

A two-factor structural model for valuing corporate securities

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

We propose a general structural model for valuing risky corporate debt securities within a two-dimensional framework. The state variables in our model include the firm’s asset value, described as a geometric Brownian motion stochastic process, and the short-term interest rate, following a mean-reverting Ornstein–Uhlenbeck stochastic process. Our model accommodates flexible debt structure, multiple seniority classes, tax benefits, bankruptcy costs, and a stochastic endogenous default barrier. The proposed methodology relies on a two-dimensional dynamic program coupled with finite elements where key transition parameters are computed in closed form, and effective approximations using local interpolations are made during backward recursion. Our design incorporates space discretization without imposing time discretization, which is advantageous, particularly in the valuation of corporate bonds where exercise opportunities are often distant. Our methodology distinguishes itself by assuming a numerical error, setting it apart from statistical methods. Together, the above features establish dynamic programming coupled with finite elements as a competitive valuation approach as compared to its counterparts in the existing literature. We use parallel computing to enhance the efficiency of our methodology. We conduct a numerical and and an empirical investigation, both of which show consistency with several empirical evidence documented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), ministère de l’économie, de la Science et de l’Innovation du Québec (MESI) and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT).

References

  • Altieri, A., & Vargiolu, T. (2001). Optimal default boundary in discrete time models. Rendiconti per gli Studi Economici Quantitativi, 2(1), 1–20.

    Google Scholar 

  • Andersen, L., & Broadie, M. (2004). Primal-dual simulation algorithm for pricing multidimensional American options. Management Science, 50(9), 1222–1234.

    Article  Google Scholar 

  • Anderson, R., & Sundaresan, S. (1996). Design and valuation of debt contracts. Review of Financial Studies, 9(1), 37–68.

    Article  Google Scholar 

  • Ayadi, M. A., Ben-Ameur, H., & Fakhfakh, T. (2016). A dynamic program for valuing corporate securities. European Journal of Operational Research, 249(2), 751–770.

    Article  Google Scholar 

  • Bakshi, G., Crosby, J., Gao, X., & Hansen, J. W. (2023). Treasury option returns and models with unspanned risks. Journal of Financial Economics, 150(3), 103736.

    Article  Google Scholar 

  • Bakshi, G., Gao, X., & Zhong, Z. (2022). Decoding default risk: A review of modeling approaches, findings, and estimation methods. Annual Review of Financial Economics, 14, 391–413.

    Article  Google Scholar 

  • Ben-Abdellatif, M., Ben-Ameur, H., Chérif, R., & Fakhfakh, T. (2023). Quasi-maximum likelihood for estimating structural models. Gerad Report, G-2021-11.

  • Berridge, S., & Schumacher, J. (2008). An irregular grid approach for pricing high-dimensional American options. Journal of Computational and Applied Mathematics, 222(1), 94–111.

    Article  Google Scholar 

  • Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. The Journal of Finance, 31(2), 351–367.

    Article  Google Scholar 

  • Boyle, P., Broadie, M., & Glasserman, P. (1997). Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control, 21(8), 1267–1321.

    Article  Google Scholar 

  • Boyle, P. P. (1988). A lattice framework for option pricing with two state variables. Journal of Financial and Quantitative Analysis, 23(1), 1–12.

    Article  Google Scholar 

  • Boyle, P. P., Evnine, J., & Gibbs, S. (1989). Numerical evaluation of multivariate contingent claims. Review of Financial Studies, 2(2), 241–250.

    Article  Google Scholar 

  • Briys, E., & De Varenne, F. (1997). Valuing risky fixed rate debt: An extension. Journal of Financial and Quantitative Analysis, 32(02), 239–248.

    Article  Google Scholar 

  • Carayannopoulos, P. (1996). Valuing convertible bonds under the assumption of stochastic interest rates: An empirical investigation. Quarterly Journal of Business and Economics, 17–31.

  • Cathcart, L., & El-Jahel, L. (1998). Valuation of defaultable bonds. The Journal of Fixed Income, 8(1), 65–78.

    Article  Google Scholar 

  • Chen, N., & Kou, S. G. (2009). Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk. Mathematical Finance, 19(3), 343–378.

    Article  Google Scholar 

  • Collin-Dufresne, P., & Goldstein, R. S. (2001). Do credit spreads reflect stationary leverage ratios? The Journal of Finance, 56(5), 1929–1957.

    Article  Google Scholar 

  • Collin-Dufresne, P., Goldstein, R. S., & Martin, J. S. (2001). The determinants of credit spread changes. The Journal of Finance, 56(6), 2177–2207.

    Article  Google Scholar 

  • Conrad, J., Dittmar, R. F., & Hameed, A. (2020). Implied default probabilities and losses given default from option prices. Journal of Financial Econometrics, 18(3), 629–652.

    Article  Google Scholar 

  • Cox, J. C., Ingersoll, J. E., Jr., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica: Journal of the Econometric Society, 53, 385–407.

    Article  Google Scholar 

  • Del Moral, P., Rémillard, B., & Rubenthaler, S. (2012). Monte Carlo approximations of American options that preserve monotonicity and convexity. In Numerical methods in finance, (pp. 115–143). Springer.

  • Delianedis, G. & Geske, R. (2001). The components of corporate credit spreads. UCLA Finance Paper, 22(01).

  • Dockendorf, J., & Paxson, D. A. (2015). Sequential real rainbow options. The European Journal of Finance, 21(10–11), 867–892.

    Article  Google Scholar 

  • Duan, J.-C. (1994). Maximum likelihood estimation using price data of the derivative contract. Mathematical Finance, 4(2), 155–167.

    Article  Google Scholar 

  • Duan, J.-C. (2000). Correction: Maximum likelihood estimation using price data of the derivative contract (mathematical finance 1994, 4/2, 155–167). Mathematical Finance, 10(4), 461–462.

    Article  Google Scholar 

  • Duan, J.-C., Moreau, A. F., & Sealey, C. (1995). Deposit insurance and bank interest rate risk: Pricing and regulatory implications. Journal of Banking & Finance, 19(6), 1091–1108.

    Article  Google Scholar 

  • Eom, Y. H., Helwege, J., & Huang, J.-Z. (2004). Structural models of corporate bond pricing: An empirical analysis. The Review of Financial Studies, 17(2), 499–544.

    Article  Google Scholar 

  • Ericsson, J., & Reneby, J. (1998). A framework for valuing corporate securities. Applied Mathematical Finance, 5(3–4), 143–163.

    Article  Google Scholar 

  • François, P., & Morellec, E. (2004). Capital structure and asset prices: Some effects of bankruptcy procedures. The Journal of Business, 77(2), 387–411.

    Article  Google Scholar 

  • Genz, A. (2004). Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing, 14(3), 251–260.

    Article  Google Scholar 

  • Geske, R. (1977). The valuation of corporate liabilities as compound options. The Journal of Financial and Quantitative Analysis, 12(4), 541–552.

    Article  Google Scholar 

  • Geske, R., Subrahmanyam, A., & Zhou, Y. (2016). Capital structure effects on the prices of equity call options. Journal of Financial Economics, 121(2), 231–253.

    Article  Google Scholar 

  • Gündüz, Y., & Uhrig-Homburg, M. (2014). Does modeling framework matter? A comparative study of structural and reduced-form models. Review of Derivatives Research, 17, 39–78.

    Article  Google Scholar 

  • Hsu, J., Saá-Requejo, J., & Santa-Clara, P. (2010). A structural model of default risk. Journal of Fixed Income, 19(3), 77–94.

    Article  Google Scholar 

  • Huang, J.-Z., & Huang, M. (2012). How much of the corporate-treasury yield spread is due to credit risk? The Review of Asset Pricing Studies, 2(2), 153–202.

    Article  Google Scholar 

  • Huang, J.-Z., Shi, Z., & Zhou, H. (2020). Specification analysis of structural credit risk models. Review of Finance, 24(1), 45–98.

    Google Scholar 

  • Jamshidian, F. (1989). An exact bond option formula. The Journal of Finance, 44(1), 205–209.

    Article  Google Scholar 

  • Kamrad, B., & Ritchken, P. (1991). Multinomial approximating models for options with \(k\) state variables. Management Science, 37(12), 1640–1652.

    Article  Google Scholar 

  • Kim, I. J., Ramaswamy, K., & Sundaresan, S. (1993). Does default risk in coupons affect the valuation of corporate bonds?: A contingent claims model. Financial Management, 22(1), 117–131.

    Article  Google Scholar 

  • Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal capital structure. The Journal of Finance, 49(4), 1213–1252.

    Article  Google Scholar 

  • Leland, H. E., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. The Journal of Finance, 51(3), 987–1019.

    Article  Google Scholar 

  • Litterman, R. B., & Scheinkman, J. (1991). Common factors affecting bond returns. The Journal of Fixed Income, 1(1), 54–61.

    Article  Google Scholar 

  • Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. The Journal of Finance, 50(3), 789–819.

    Article  Google Scholar 

  • Ma, Z., Ma, C., & Wu, Z. (2022). Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: Application of mellin transform methods. Review of Derivatives Research, 1–45.

  • Mella-Barral, P., & Perraudin, W. (1997). Strategic debt service. The Journal of Finance, 52(2), 531–556.

    Article  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.

    Google Scholar 

  • Remillard, B. (2013). Statistical methods for financial engineering. CRC Press.

    Google Scholar 

  • Sarig, O., & Warga, A. (1989). Some empirical estimates of the risk structure of interest rates. The Journal of Finance, 44(5), 1351–1360.

    Article  Google Scholar 

  • Schaefer, S. M., & Strebulaev, I. A. (2008). Structural models of credit risk are useful: Evidence from hedge ratios on corporate bonds. Journal of Financial Economics, 90(1), 1–19.

    Article  Google Scholar 

  • Shih, W. (2016). The real lessons from kodak’s decline. MIT Sloan Management Review, 57(4), 11.

    Google Scholar 

  • Shimko, D. C., Tejima, N., & Van Deventer, D. R. (1993). The pricing of risky debt when interest rates are stochastic. The Journal of Fixed Income, 3(2), 58–65.

    Article  Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2), 177–188.

    Article  Google Scholar 

  • Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking and Finance, 25(11), 2015–2040.

    Article  Google Scholar 

Download references

Funding

The funding was provided by Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Ben-Abdellatif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hatem Ben-Ameur and Bruno Rémillard: Members of GERAD.

Appendices

Appendix A: Proof of Theorem 1

Proof

First, note that for any \(\tau \in \mathcal {T}_k\), with \(k<N\),

$$\begin{aligned} W_k^{(n)}= & {} (1-\alpha )V_n \quad \text { and } \mathcal {E}_k^{(k)} = 0;\\ TB_\tau ^{(k)}= & {} \left\{ b_k + e^{-r_{k+1}} TB_\tau ^{(k+1)} \right\} \textbf{1}(\tau>k);\\ D_\tau ^{(k)}= & {} (1-\alpha )V_k \textbf{1}(\tau =k) + \left\{ d_k + e^{-r_{k+1}} D_\tau ^{(k+1)} \right\} \textbf{1}(\tau >k). \end{aligned}$$

The proof is done by reverse induction on \(k \le N\). We first prove the result for \(k=N\). Then assuming the result is true for all \(k\in \{n+1. \ldots , N\}\), we prove it is true for \(k=n\).

Part (I): We prove the result for \(k=N\), i.e., we prove (4), (6) and (7).

First, for any \(\tau \in \mathcal {T}\) with \(\tau \ge N\), one has

$$\begin{aligned} E\left( \mathcal {E}_\tau ^{(N)}|\mathcal {F}_N\right) = \mathcal {B}_N\textbf{1}(\tau >N), \end{aligned}$$

where \(\mathcal {B}_N = V_N + b_N-d_N\). Hence

$$\begin{aligned} \mathcal {T}_N = \left\{ \tau \in \mathcal {T}; \tau \ge N\; \text { and } \{\tau>N\}\subset \{\mathcal {B}_N>0\} \right\} . \end{aligned}$$

Now, for any \(\tau \in \mathcal {T}_N\),

$$\begin{aligned} J_\tau ^{(N)}= & {} -\alpha V_N \textbf{1}(\tau =N)+ b_N \textbf{1}(\tau =N+1) \\= & {} -\alpha V_N \textbf{1}(\mathcal {B}_N\le 0) -\alpha V_N \textbf{1}(\tau =N)\textbf{1}(\mathcal {B}_N>0) + b_N \textbf{1}(\tau =N+1) \\\le & {} -\alpha V_N \textbf{1}(\mathcal {B}_N \le 0) + b_N \textbf{1}(\mathcal {B}_N>0) \end{aligned}$$

As a result, if \(\tau _N^\star = N\textbf{1}(\mathcal {B}_N \le 0)+ (N+1)\textbf{1}(\mathcal {B}_N>0)\), then

$$\begin{aligned} \mathcal {E}_N = E\left( \mathcal {E}_{\tau _N^\star }^{(N)}|\mathcal {F}_N \right) =\max (\mathcal {B}_N,0) \end{aligned}$$

and

$$\begin{aligned} {\bar{J}}_N =E\left( J_{\tau _N^\star }^{(N)}|\mathcal {F}_N \right) = -\alpha V_N \textbf{1}(\mathcal {E}_N= 0) + b_N\textbf{1}(\mathcal {E}_N>0). \end{aligned}$$

Hence (4), (6) and (7) hold for \(k=N\).

Part (II): Next suppose the result is true for all \(k>n\), i.e., (5)– (8) hold for all \(k>n\), We need to show that they also hold for \(k=n\).

For \(\tau \in \mathcal {T}_n\),

$$\begin{aligned} E\left( J_\tau ^{(n)} |\mathcal {F}_n\right)= & {} -\alpha V_n \textbf{1}(\tau =n)+ b_n \textbf{1}(\tau>n) + E\left( e^{-r_{n+1}} J_{\tau \vee (n+1)}^{(n+1)} |\mathcal {F}_n\right) \textbf{1}(\tau>n)\\= & {} -\alpha V_n \textbf{1}(\tau =n)+ b_n \textbf{1}(\tau>n) \\{} & {} \qquad + E\left\{ e^{-r_{n+1}} E\left( J_{\tau \vee (n+1)}^{(n+1)}|\mathcal {F}_{n+1}\right) |\mathcal {F}_n\right\} \textbf{1}(\tau>n)\\\le & {} -\alpha V_n \textbf{1}(\tau =n)+ \left\{ b_n + E\left( e^{-r_{n+1}}{\bar{J}}_{n+1}|\mathcal {F}_n\right) \right\} \textbf{1}(\tau >n), \end{aligned}$$

where the last inequality comes from the fact that if \(\tau \in \mathcal {T}_n\), then \(\tau \vee (n+1) \in \mathcal {T}_{n+1}\). As a result, since \(\tau>n\subset \left\{ \mathcal {B}_n^{(\tau )}>0\right\} \), it follows that

$$\begin{aligned} E\left( J_\tau ^{(n)} |\mathcal {F}_n\right) \le -\alpha V_n\textbf{1}\left( \mathcal {B}_n^{(\tau )} \le 0\right) + \left\{ b_n + E\left( e^{-r_{n+1}}{\bar{J}}_{n+1}|\mathcal {F}_n\right) \right\} \textbf{1}\left( \mathcal {B}_n^{(\tau )}>0\right) . \end{aligned}$$

By the induction hypothesis and (2), it follows that

$$\begin{aligned} \mathcal {B}_n^{(\tau )} \le V_n+b_n-d_n - E\left( e^{-r_{n+1}} V_{n+1}|\mathcal {F}_n\right) + E\left( e^{-r_{n+1}} \mathcal {E}_{n+1}|\mathcal {F}_n \right) , \end{aligned}$$

so \(\left\{ \mathcal {B}_n^{(\tau )}> 0 \right\} \subset \{\mathcal {E}_n>0\}\). As a result, setting \(c_n = b_n + E\left( e^{-r_{n+1}}\bar{J}_{n+1}|\mathcal {F}_n\right) \), one may conclude that

$$\begin{aligned} -\alpha V_n\textbf{1}\left( \mathcal {B}_n^{(\tau )} \le 0\right) + c_n \textbf{1}\left( \mathcal {B}_n^{(\tau )}>0\right) \le -\alpha V_n\textbf{1}\left( \mathcal {E}_n = 0\right) + c_n \textbf{1}\left( \mathcal {E}_n >0\right) , \end{aligned}$$

since

$$\begin{aligned} c_n \left\{ \textbf{1}\left( \mathcal {E}_n>0\right) -\textbf{1}\left( \mathcal {B}_n^{(\tau )}>0\right) \right\} \ge 0 \ge \alpha V_n \left\{ \textbf{1}\left( \mathcal {E}_n =0\right) -\textbf{1}\left( \mathcal {B}_n^{(\tau )}\le 0\right) \right\} . \end{aligned}$$

Therefore \({\bar{J}}_n \le -\alpha V_n\textbf{1}\left( \mathcal {E}_n = 0\right) + c_n \textbf{1}\left( \mathcal {E}_n >0\right) \). Next, from (6), it then follows that \(\tau _n^\star \vee (n+1) = \tau _{n+1}^\star \), so

$$\begin{aligned} {\bar{J}}_n= & {} E\left( J_{\tau _n^\star }^{(n)} |\mathcal {F}_n\right) \nonumber \\= & {} -\alpha V_n\textbf{1}(\mathcal {E}_n = 0)+ \left\{ b_n + E\left( e^{-r_{n+1}}{\bar{J}}_{n+1}|\mathcal {F}_n\right) \right\} \textbf{1}(\mathcal {E}_n>0). \end{aligned}$$

Hence (5)–(8) also hold \(k=n\), completing the proof. \(\square \)

Appendix B: Forward measure

The forward measure \({\mathbb {P}}^{T_F}\) for any date \(T_F\) is the measure associated with taking the bond \(B(t,T_F)\) as a numeraire asset. Under the forward measure, the ratio \(B(t,T)/B (t, T_F)\) is a martingale for \(T\le T_F\). From Girsanov’s Theorem, it follows that the process \(W^{T_F}\) defined by

$$\begin{aligned} dW_t^{T_F} = dZ_t^1 +\frac{\sigma _r}{\alpha } (1 - e^{-\alpha (T_F-t)}), \end{aligned}$$

is standard Brownian motion under \({\mathbb {P}}_{T_F}\). Thus, the dynamic of the interest rate becomes

$$\begin{aligned} dr_t=\left( \theta -\alpha r_t - \frac{\sigma _r^2}{\alpha }(1- e^{-\alpha (T_F-t)})\right) dt+\sigma _r dW_t^{T_F}, \end{aligned}$$

with \(\theta = \alpha \beta \) and the dynamic of \(X_t = \ln (V_t)\) is

$$\begin{aligned} dX_t&= \left( r_t-\delta -\frac{\sigma _V^2}{2}- \frac{{\rho \sigma _V \sigma _r}}{\alpha }(1-e^{-\alpha (T_F-t)})\right) dt +\sigma _V\left( \rho dW_t^{T_F}+\sqrt{1-\rho ^2}dZ_t^2\right) . \end{aligned}$$

The solutions are given by

$$\begin{aligned} r_t \,\, =\,\,\,&r_ue^{-\alpha (t-u)}+ \left( \frac{\theta }{\alpha }-\frac{\sigma _r^2}{\alpha ^2}\right) \left( 1-e^{-\alpha (t-u)}\right) + \frac{\sigma ^2_r}{2\alpha ^2}\left( e^{-\alpha (T_F-t)}-e^{-\alpha (T_F+t-2u)}\right) +\\&\sigma _r\int _u^te^{-\alpha (t-s)}dW_s^{T_F},\\ X_t \,\, =\,\,\,&X_u+\beta (u,t)-\left( \frac{\sigma _V^2}{2}+\frac{\rho \sigma _V\sigma _r}{\alpha }\right) (t-u) + \frac{\rho \sigma _V\sigma _r}{\alpha ^2}\left( e^{-\alpha (T_F-u)}-e^{-\alpha (T_F-u)}\right) +\\&\int _u^t\left( \rho \sigma _V+ \frac{\sigma _r}{\alpha }\left( 1-e^{-\alpha (t-s)}\right) \right) dW^{T_F}_s, \quad \text {for } 0 \le u \le t, \end{aligned}$$

with

$$\begin{aligned} \beta (u,t)\,\,&=\,\,\,\frac{r_u}{\alpha }\left( 1-e^{-\alpha (t-u)}\right) +\left( \frac{\theta }{\alpha }-\frac{\sigma _r^2}{\alpha ^2}\right) \left( -\frac{1- e^{-\alpha (t-u)}}{\alpha }+t-u\right) \\&\quad +\frac{\sigma _r^2}{2\alpha ^3}\left( e^{-\alpha (T_F-t)}-2e^{-\alpha (T_F-u)}+e^{-\alpha (T_F+t-2u)}\right) . \end{aligned}$$

Under the forward measure, the pair \((X_t, r_t)\) follows a bivariate normal distribution with

$$\begin{aligned} E[X_t|X_u] \,\,&=\,\,\, X_u+\beta (u,t)-\left( \frac{\sigma _V^2}{2}+\frac{\rho \sigma _V\sigma _r}{\alpha }\right) (t-u)+\frac{\rho \sigma _V\sigma _r}{\alpha ^2}\left( e^{-\alpha (T_F-t)}-e^{-\alpha (T_F-u)}\right) ,\\ Var[X_t|X_u]\,\,&=\,\,\,\left( \sigma _V^2+\frac{2\rho \sigma _V\sigma _r}{\alpha }+\frac{\sigma _r^2}{\alpha ^2}\right) (t-u)-\frac{2\rho \sigma _V\sigma _r}{\alpha ^2} \times \left( 1-e^{-\alpha (t-u)}\right) - \\ {}&\frac{\sigma _r^2}{2\alpha ^3}\left( 3-4e^{-\alpha (t-u)}+e^{-2\alpha (t-u)}\right) , \\ E[r_t|r_u]\,\,&=\,\,\, r_ue^{-\alpha (t-u)}+\frac{\theta }{\alpha }\left( 1-e^{-\alpha (t-u)}\right) -\frac{\sigma _r^2}{\alpha ^2}\times \left( 1-e^{-\alpha (t-u)}\right) +\\ {}&\frac{\sigma _r^2}{2\alpha ^2}\left( e^{-\alpha (T_F-t)}-e^{-\alpha (T_F+t-2u)}\right) , \\ Var[r_t|r_u]\,\,&=\,\,\,\frac{\sigma _r^2}{2\alpha }\left( 1-e^{-2\alpha (t-u)}\right) , \end{aligned}$$

and

$$\begin{aligned} Cov[X_t, r_t|X_u, r_u] \,\, =\,\,\, \left( \frac{\rho \sigma _V\sigma _r}{\alpha }+\frac{\sigma _r^2}{\alpha ^2}\right) \left( 1-e^{-\alpha (t-u)}\right) -\frac{\sigma _r^2}{2\alpha ^2}\times \left( 1-e^{-2\alpha (t-u)}\right) . \end{aligned}$$

Appendix C: Transitions parameters

The transition parameters \(T^{\nu \mu }_{klij}\) for \(\nu \) and \(\mu \in \{0,1\}\), \(k\in \{1,\ldots ,p\}\), \(l \in \{1,\ldots ,q\}\), \(i \in \{0,\ldots ,p\}\), and \(j \in \{0,\ldots ,q\}\) are calculated as follows:

$$\begin{aligned} T^{00}_{klij}\,\,=\,\,\,&{\mathbb {E}}^*\left[ {\mathbb {I}}\left( (V_{t_{n+1}}, r_{t_{n+1}}) \in R_{ij} \right) \mid (V_{t_n},r_{t_n})=(a_k,b_l)\right] \\ =\,\,\,&{\mathbb {Q}}^{*}\left[ (V_{t_{n+1}}, r_{t_{n+1}}) \in R_{ij} \mid (V_{t_n},r_{t_n})=(a_k,b_l) \right] \\ =\,\,\,&\int _{{x}_{k,i}}^{{x}_{k,i+1}} \int _{y_{l,j}}^{y_{l,j+1}} \phi (z_1,z_2,\rho ) dz_1dz_2\\ =\,\,\,&\Phi (x_{k,i+1},y_{l,j+1},\rho )- \Phi (x_{k,i},y_{l,j+1},\rho )-\Phi (x_{k,i+1},y_{l,j},\rho )+\Phi (x_{k,i},y_{l,j},\rho ), \end{aligned}$$

where

$$\begin{aligned} x_{k,i} \,\,=\,\,\,&\left( \log \left( a_{i}/a_k\right) -\eta _1\right) /\sqrt{\delta _1}\\ y_{l,j} \,\,=\,\,\,&\left( b_{j}-\eta _2\right) /\sqrt{\delta _2},\\ \eta _1\,\,=\,\,\,&\beta _l-\left( \frac{\sigma _V^2}{2}+\frac{\rho \sigma _V\sigma _r}{\alpha }\right) \Delta t+\frac{\rho \sigma _V\sigma _r}{\alpha ^2}\left( 1-e^{-\alpha \Delta t}\right) , \\ \delta _1 \,\,=\,\,\,&\left( \sigma _V^2+\frac{2\rho \sigma _V\sigma _r}{\alpha }+\frac{\sigma _r^2}{\alpha ^2}\right) \Delta t-\frac{2\rho \sigma _V\sigma _r}{\alpha ^2}\left( 1-e^{-\alpha \Delta t}\right) \\&\quad -\frac{\sigma _r^2}{2\alpha ^3}\left( 3-4e^{-\alpha \Delta t}+e^{-2\alpha \Delta t}\right) , \\ \eta _2 \,\,=\,\,\,&b_le^{-\alpha \Delta t}+\frac{\theta }{\alpha }\left( 1-e^{-\alpha \Delta t}\right) -\frac{\sigma _r^2}{\alpha ^2}\left( 1-e^{-\alpha \Delta t}\right) +\frac{\sigma _r^2}{2\alpha ^2}\left( 1-e^{-2\alpha \Delta t}\right) ,\\ \delta _2 \,\,=\,\,\,&\frac{\sigma _r^2}{2\alpha }\left( 1-e^{-2\alpha \Delta t}\right) ,\\ \beta _l\,\,=\,\,\,&\frac{r_l}{\alpha }\left( 1-e^{-\alpha \Delta t}\right) +\left( \frac{\theta }{\alpha }-\frac{\sigma _r^2}{\alpha ^2}\right) \left( -\frac{1- e^{-\alpha \Delta t}}{\alpha }+\Delta t\right) \\&\quad +\frac{\sigma _r^2}{2\alpha ^3}\left( 1-2e^{-\alpha \Delta t}+e^{-2\alpha \Delta t}\right) . \end{aligned}$$

\({\mathbb {E}}^*\) is the expectation under the forward measure to the time \(t_{n+1}\). The functions \(\phi (\cdot ,\cdot ,\rho )\) and \(\Phi (\cdot ,\cdot ,\rho )\) are the density and cumulative density functions, respectively, of the bivariate standard normal distribution with correlation coefficient \(\rho \). The function \(\Phi (\cdot ,\cdot ,\rho )\) is computed according to Genz (2004).

$$\begin{aligned} T^{10}_{klij}\,\,=\,\,\,&{\mathbb {E}}^{*}\left[ V_{t_{n+1}}{\mathbb {I}}\left( (V_{t_{n+1}}, r_{t_{n+1}}) \in R_{ij} \right) \mid (V_{t_n},r_{t_n})=(a_k,b_l)\right] \\ =\,\,\,&w^1_{k}\int _{x_{k,i}-\sqrt{\delta _1}}^{x_{k,i+1}-\sqrt{\delta _1}} \int _{y_{l,j}-\rho \sqrt{\delta _1}}^{y_{l,j+1}-\rho \sqrt{\delta _1}} \phi (u_1,u_2,\rho ) du_1du_2\\ =\,\,\,&w^1_{k}\Big [\Phi (x_{k,i+1}-\sqrt{\delta _1},y_{l,j+1}-\rho \sqrt{\delta _1},\rho ) -\Phi (x_{k,i}-\sqrt{\delta _1},y_{l,j+1}-\rho \sqrt{\delta _1},\rho )\\ \,\,\,&-\Phi (x_{k,i+1}-\sqrt{\delta _1},y_{l,j}-\rho \sqrt{\delta _1},\rho )+\Phi (x_{k,i}-\sqrt{\delta _1},y_{l,j}-\rho \sqrt{\delta _1},\rho )\Big ], \end{aligned}$$

where \(w^1_{k}=a_k \exp \left( \eta _1+\delta _1/2\right) \).

$$\begin{aligned} T^{01}_{klij}\,\,=\,\,\,&{\mathbb {E}}^{*}\left[ e^{r_{t_{n+1}}}{\mathbb {I}}\left( (V_{t_{n+1}}, r_{t_{n+1}}) \in R_{ij} \right) \mid (V_{t_n},r_{t_n})=(a_k,b_l)\right] \\ =\,\,\,&w^2_{l}\int _{x_{k,i}-\rho \sigma _2\Delta t}^{x_{k,i+1}-\rho \sigma _2\Delta t} \int _{y_{l,j}- \sigma _2\Delta t}^{y_{l,j+1}- \sigma _2\Delta t} \phi (u_1,u_2,\rho ) du_1du_2\\ =\,\,\,&w^2_{l}\Big [\Phi (x_{k,i+1}-\rho \sqrt{\delta _2} ,y_{l,j+1}-\sqrt{\delta _2},\rho )\Phi (x_{k,i}-\rho \sqrt{\delta _2},y_{l,j+1}-\sqrt{\delta _2},\rho )\\ \,\,\,&-\Phi (x_{k,i+1}-\rho \sqrt{\delta _2},y_{l,j}-\sqrt{\delta _2},\rho )+\Phi (x_{k,i}-\rho \sqrt{\delta _2},y_{l,j}-\sqrt{\delta _2},\rho )\Big ], \end{aligned}$$

where \(w^2_{l}=\exp \left( \eta _2+\delta _2/2\right) \).

$$\begin{aligned} T^{11}_{klij}\,\,=\,\,\,&{\mathbb {E}}^{*}\left[ V_{t_{n+1}}e^{r_{t_{n+1}}}{\mathbb {I}}\left( (V_{t_{n+1}}, r_{t_{n+1}}) \in R_{ij} \right) \mid (V_{t_n},r_{t_n})=(a_k,b_l)\right] \\ =\,\,\,&w_{1,k}w^2_{l}\exp \left( \rho \sqrt{\delta _1\delta _2}\right) \times \int _{x_{k,i}-\sqrt{\delta _1}-\rho \sqrt{\delta _2}}^{x_{k,i+1}-\sqrt{\delta _1}-\rho \sqrt{\delta _2}}\!\int _{y_{l,j}-\rho \sqrt{\delta _1} - \sqrt{\delta _2}}^{y_{l,j+1}- \rho \sqrt{\delta _1} -\sqrt{\delta _2}}\! \!\phi (u_1,u_2,\rho ) du_1du_2\\ =\,\,\,&w^1_{k}w^2_{l}\exp \left( \rho \sqrt{\delta _1\delta _2}\right) \times \Big [\Phi (x_{k,i+1}-\sqrt{\delta _1}-\rho \sqrt{\delta _2},y_{l,j+1}-\rho \sqrt{\delta _1} - \sqrt{\delta _2},\rho )\! \!\\ \,\,\,&-\Phi (x_{k,i}-\sqrt{\delta _1}-\rho \sqrt{\delta _2},y_{l,j+1}-\rho \sqrt{\delta _1} - \sqrt{\delta _2},\rho )\\ \,\,\,&-\Phi (x_{k,i+1}-\sqrt{\delta _1}-\rho \sqrt{\delta _2},y_{l,j}-\rho \sqrt{\delta _1} - \sqrt{\delta _2},\rho ) \\ \,\,\,&+\Phi (x_{k,i}-\sqrt{\delta _1}-\rho \sqrt{\delta _2},y_{l,j}--\rho \sqrt{\delta _1} - \sqrt{\delta _2},\rho ) \Big ]. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Abdellatif, M., Ben-Ameur, H., Chérif, R. et al. A two-factor structural model for valuing corporate securities. Rev Deriv Res (2024). https://doi.org/10.1007/s11147-024-09203-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11147-024-09203-2

Keywords

Mathematics Subject Classification

JEL Classification

Navigation