Appendix A BKM risk-neutral moment estimators
This appendix presents the BKM estimator and how it was derived. This is also presented in AZ, but it is included here for readers’ convenience.
The BKM method calculates the risk-neutral (return) skewness (\(n = 3\)) and kurtosis (\(n = 4\)) using the basic normalized nth central moments (viz. standardized moments) equation:
$$\begin{aligned} n\text{th} \, \text{standardized moment} = \frac{E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right] \right) ^{n} \right] }{\left\{ E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right] \right) ^2 \right] \right\} ^{\frac{n}{2}}} \end{aligned}$$
(A1)
where \(R\left( t, \tau \right) \equiv \ln \left[ S_{T} \right] - \ln \left[ S_{t} \right] \), the log returns. However, BKM makes a small approximation to the mean and sets dividends, q, to zero:
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right]&\approx \mu (t, \tau ) \nonumber \\&= e^{r\tau } - 1 - \frac{1}{2} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 \right] - \frac{1}{3!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^3 \right] \nonumber \\&\quad - \frac{1}{4!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^4 \right] \end{aligned}$$
(A2)
The approximation is due to the exclusion of higher-order terms in the expansion of the exponential function. This approximation serves in a similar manner to the convexity adjustment term in the addition of higher-order moments. For the BKM method, this is in the form of volatility (\(R\left( t, \tau \right) ^2\)), cubic (\(R\left( t, \tau \right) ^3\)), and quadratic (\(R\left( t, \tau \right) ^4\)) payoff contracts. These contracts are not standard; therefore, to calculate their values, the contracts are decomposed into European options, bonds, and shares. Equation 1 in Carr and Madan (2001) shows that any twice-differentiable payoff function with bounded expectation can be spanned by a continuum of out-of-the-money (OTM) European options, bonds, and shares. For payoff function \(H\left( x \right) \in {\mathscr {C}}^2\) and some constant \(x_0\), the decomposed payoff function is given by
$$\begin{aligned} \begin{aligned} H\left( x \right) = H\left( x_0 \right) + H_{x}\left( x_0 \right) \left( x - x_0 \right) &+ \int _{0}^{x_0}{H_{xx}\left( K \right) \max \left( K - x, 0 \right) dK} \\&+ \int _{x_0}^{\infty }{H_{xx}\left( K \right) \max \left( x - K, 0 \right) dK} \end{aligned} \end{aligned}$$
(A3)
Following BKM in using Eq. (A3), setting \(S_{T} = S\), the dependent variable, and setting \(x_0\) to \(S_{t}\), the following payoff
$$\begin{aligned} H(S) = {\left\{ \begin{array}{ll} R\left( t, \tau \right) ^2 &{} \text{ volatility }\, \text{ contract } (V) \\ R\left( t, \tau \right) ^3 &{} \text{ cubic } \,\text{ contract } (W) \\ R\left( t, \tau \right) ^4 &{} \text{ quartic } \,\text{ contract } (X) \end{array}\right. } \end{aligned}$$
(A4)
results in \(H\left( S_{t} \right) = 0\), \(H_{x}\left( S_{t} \right) = 0\), and
$$\begin{aligned} H_{xx}\left( K \right) = \frac{n}{K^2}\left[ \left( n - 1 \right) \left[ \ln \left( \frac{K}{S_{t}} \right) \right] ^{n - 2} - \left[ \ln \left( \frac{K}{S_{t}} \right) \right] ^{n - 1} \right] . \end{aligned}$$
(A5)
Finally, the expected value of each contract is given by
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ e^{-r \tau } R\left( t, \tau \right) ^n \right] = \int _{0}^{\infty }{\frac{n}{K^2}\left[ \left( n - 1 \right) \left[ \ln \left( \frac{K}{S_{t}} \right) \right] ^{n - 2} - \left[ \ln \left( \frac{K}{S_{t}} \right) \right] ^{n - 1} \right] Q\left( K \right) dK} \end{aligned}$$
(A6)
where n specifies the type of power contract and \(Q\left( K \right) \) corresponds to the OTM option with strike K. If there exists both put and call at the at-the-money point, then the average of the two is taken. \(n = \{ 2, 3, 4 \}\) corresponds to the volatility (V), cubic (W), and quadratic (X) payoff contracts, respectively. With these payoff contracts, the skewness (and kurtosis) can be calculated using Eq. (A1).
The standardized skewness is given by Eq. (A1) when \(n = 3\). Expanding this, the BKM formula for the risk-neutral skewness can be found. Similarly, the standardized kurtosis can be found when \(n = 4\). BKM defines \(\mu \), V, W, and X as \(E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right] \), \(E_{t}^{\mathcal{Q}} \left[ e^{-r\tau } R\left( t, \tau \right) ^{2} \right] \), \(E_{t}^{\mathcal{Q}} \left[ e^{-r\tau } R\left( t, \tau \right) ^{3} \right] \), and \(E_{t}^{\mathcal{Q}} \left[ e^{-r\tau } R\left( t, \tau \right) ^{4} \right] \), respectively.
$$\begin{aligned} \text{ Skewness }&= \frac{E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - \mu \right) ^{3} \right] }{\left\{ E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - \mu \right) ^2 \right] \right\} ^{\frac{3}{2}}} \end{aligned}$$
$$\begin{aligned}&= \frac{E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^3 - 3 \mu R\left( t, \tau \right) ^2 + 3 \mu ^2 R\left( t, \tau \right) - \mu ^3 \right] }{\left\{ E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 - 2 \mu R\left( t, \tau \right) + \mu ^2 \right] \right\} ^{\frac{3}{2}}} \end{aligned}$$
$$\begin{aligned}&= \frac{e^{r\tau } W - 3 \mu e^{r\tau } V + 3 \mu ^2 \mu - \mu ^3}{\left[ e^{r\tau } V - 2 \mu \mu + \mu ^2 \right] ^{\frac{3}{2}}} = \frac{e^{r\tau } W - 3 \mu e^{r\tau } V + 2 \mu ^3}{\left[ e^{r\tau } V - \mu ^2 \right] ^{\frac{3}{2}}} \end{aligned}$$
(A7)
$$\begin{aligned} \text{ Kurtosis }&= \frac{E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - \mu \right) ^{4} \right] }{\left\{ E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - \mu \right) ^2 \right] \right\} ^{2}} \end{aligned}$$
$$\begin{aligned}&= \frac{E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^4 - 4 \mu R\left( t, \tau \right) ^3 + 6 \mu ^2 R\left( t, \tau \right) ^2 - 4 \mu ^3 R\left( t, \tau \right) + \mu ^4 \right] }{\left\{ E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 - 2 \mu R\left( t, \tau \right) + \mu ^2 \right] \right\} ^{2}} \end{aligned}$$
$$\begin{aligned}&= \frac{e^{r\tau } X - 4 \mu e^{r\tau } W + 6 \mu ^2 e^{r\tau } V - 4 \mu ^3 \mu + \mu ^4}{\left[ e^{r\tau } V - 2 \mu \mu + \mu ^2 \right] ^{2}} \end{aligned}$$
$$\begin{aligned}&= \frac{e^{r\tau } X - 4 \mu e^{r\tau } W + 6 \mu ^2 e^{r\tau } V - 3 \mu ^4}{\left[ e^{r\tau } V - \mu ^2 \right] ^{2}} \end{aligned}$$
(A8)
The (annualized) variance \(\sigma ^2\) is given by
$$\begin{aligned} \sigma ^2&= \frac{1}{\tau } E_{t}^{\mathcal{Q}} \left[ \left( R\left( t, \tau \right) - \mu \right) ^2 \right] = \frac{e^{r\tau } V - \mu ^2}{\tau } \end{aligned}$$
(A9)
Appendix B Truncation and discretization errors
The truncation and discretization errors are defined following AZ. For convenience, they are presented here.
As data from the options market are not continuous, the integral calculation of Eq. (A6) must be solved numerically. Using the trapezium rule, the integral can be discretized to
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ e^{-r \tau } R\left( t, \tau \right) ^n \right]&= \sum _{i = 1}^{\infty }\frac{n}{K_i^2} \left[ \left( n - 1 \right) \left[ \ln \left( \frac{K_i}{S_{t}} \right) \right] ^{n - 2}\right. \nonumber \\&\quad \left. - \left[ \ln \left( \frac{K_i}{S_{t}} \right) \right] ^{n - 1} \right] Q\left[ K_i \right] \Delta K_i \end{aligned}$$
(B10)
where
$$\begin{aligned} \Delta K_i&= \frac{1}{2} {\left\{ \begin{array}{ll} K_{2} - K_{1}, &{} i = 1 \\ K_{i + 1} - K_{i - 1}, &{} 1< i < m \\ K_{m} - K_{m - 1}, &{} i = m \end{array}\right. } \end{aligned}$$
(B11)
and m is the number of strikes. This discretization introduces errors. This slightly differs from CBOE’s discretization methods, as shown in the appendix, part C.
-
1.
Truncation errors
$$\begin{aligned} \begin{aligned}&\int _{0}^{\infty }{\cdots dK} \rightarrow \int _{K_{\min }}^{K_{\max }}{\cdots dK} \\&\quad \text{ as } K\in \left( 0, \infty \right) \rightarrow K \in \left[ K_{\min }, K_{\max } \right] \end{aligned} \end{aligned}$$
(B12)
The range of strikes are finite; therefore, the range of the integral is truncated to the strikes that are available. This is tested by defining \(K_{\min }\) and \(K_{\max }\) as
$$\begin{aligned} \left[ K_{\min }, K_{\max } \right] := \left[ F_{t}^{T} \times a, F_{t}^{T} / a \right] \end{aligned}$$
(B13)
where \(a \in (0, 1)\) is the boundary controlling factor. So as \(a \rightarrow 0\), \(K_{\min } \rightarrow 0\) and \(K_{\max } \rightarrow \infty \) and as \(a \rightarrow 1\), \(K_{\min }, K_{\max } \rightarrow F_{t}^{T}\).
-
2.
Discretization errors
$$\begin{aligned} \int _{K_{\min }}^{K_{\max }}{\cdots dK} \rightarrow \sum _{K_{\min }}^{K_{\max }}{\cdots \Delta K_i} \end{aligned}$$
(B14)
To compute integrals numerically, the integrand and region must first be discretized. This can be done using the trapezium rule. This is not the only reason why discretizing is required. The other reason is that the strikes provided in the market is not continuous, but rather, usually in fixed intervals of $1, $5, $25, and $50.Footnote 9
Appendix C Numerical integration
The traditional trapezium rule is given in the form of Eq. (C15). With a small rearrangement, Eq. (C16) can be obtained. This is the trapezium rule that is used for calculations.
$$\begin{aligned} \int _{a}^{b}{f(x) dx}&= \sum _{i = 1}^{n - 1}{\frac{f(x_i) + f(x_{i + 1})}{2} \Delta x_{i}}, \quad \Delta x_{i} = x_{i + 1} - x_{i} \end{aligned}$$
(C15)
$$\begin{aligned}&= \sum _{i = 1}^{n}{f(x_i) \Delta x_{i}}, \quad \Delta x_i = \frac{1}{2} {\left\{ \begin{array}{ll} x_{2} - x_{1}, &{} i = 1 \\ x_{i + 1} - x_{i - 1}, &{} 1< i < n \\ x_{n} - x_{n - 1}, &{} i = n \end{array}\right. } \end{aligned}$$
(C16)
The CBOE uses Eq. (C17), which introduces a small error at the end points, \(K_{\min }\) and \(K_{\max }\). This method does, however, give equal weighting to each option—rather than half the weight given to end points if the traditional trapezium rule is used.
$$\begin{aligned} \int _{a}^{b}{f(x) dx}&\approx \sum _{i = 1}^{n}{f(x_i) \Delta x_{i}}, \quad \Delta x_i = {\left\{ \begin{array}{ll} x_{2} - x_{1}, &{} i = 1 \\ \frac{x_{i + 1} - x_{i - 1}}{2}, &{} 1< i < n \\ x_{n} - x_{n - 1}, &{} i = n \end{array}\right. } \end{aligned}$$
(C17)
$$\begin{aligned}&= \int _{a}^{b}{f(x) dx} - \left( f(x_{1}) \frac{x_{2} - x_{1}}{2} + f(x_{n}) \frac{x_{n} - x_{n - 1}}{2} \right) \end{aligned}$$
(C18)
Appendix D Gram–Charlier region derivation
The Gram–Charlier density up to the kurtosis term, which is given by Eq. (2), can also be expressed in terms of Hermite polynomials and the standard normal distribution probability density function rather than the normal distribution and its derivatives. That is,
$$\begin{aligned} f(x)&= n(x) \left[ 1 + \frac{\lambda _1}{3!} He_{3}(x) + \frac{\lambda _2}{4!} He_{4}(x) \right] \end{aligned}$$
(D19)
where He, the Hermite polynomial, is defined as
$$\begin{aligned} He_{n}(x)&:= (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n}{e^{-\frac{x^2}{2}}} = \left( x - \frac{d}{dx} \right) ^n \cdot 1 \end{aligned}$$
(D20)
which gives \(He_{2}(x) = x^2 - 1\), \(He_{3}(x) = x^3 - 3x\), and \(He_{4}(x) = x^4 - 6 x^2 + 3\).
A necessary but not sufficient condition for f to be a valid probability density is that f must be positive semi-definite. As n(x) is already a valid density function, this condition is inherited by the Gram–Charlier density, that is,
$$\begin{aligned} 1 + \frac{\lambda _1}{3!} He_{3}(x) + \frac{\lambda _2}{4!} He_{4}(x) \ge 0, \quad \forall x \end{aligned}$$
(D21)
Following Jondeau and Rockinger (2001), the boundary of the valid Gram–Charlier region can be found by finding \(\lambda _1\) and \(\lambda _2\), which satisfies
$$\begin{aligned} 1 + \frac{\lambda _1}{3!} He_{3}(x) + \frac{\lambda _2}{4!} He_{4}(x)&= 0 \end{aligned}$$
(D22)
and
$$\begin{aligned} \frac{\lambda _1}{2!} He_{2}(x) + \frac{\lambda _2}{3!} He_{3}(x)&= 0 \end{aligned}$$
(D23)
for all x. The \(\lambda _1\) and \(\lambda _2\) must simultaneously satisfy Eq. (D22) to ensure that \(p_{4}(x) = 0\) (where \(p_{4}(x)\) is the left-hand side of Eq. (D22)) and Eq. (D23) to ensure that adjacent values of \(\lambda _1\) and \(\lambda _2\) will also satisfy \(p_{4}(x) = 0\) for (infinitesimally) small variations of x. Equation (D23) can be found by taking the derivative of Eq. (D22) with respect to x. The explicit equations for \(\lambda _1\) and \(\lambda _2\), found from simultaneously solving Eqs. (D22) and (D23), are
$$\begin{aligned} \lambda _1(x)&= -24 \frac{He_{3}(x)}{4 He_{3}^2(x) - 3 He_{2}(x)He_{4}(x)} \end{aligned}$$
(D24)
$$\begin{aligned} \lambda _2(x)&= 72 \frac{He_{2}(x)}{4 He_{3}^2(x) - 3 He_{2}(x)He_{4}(x)}. \end{aligned}$$
(D25)
These equations are used to plot the Gram–Charlier region in Figs. 1, 2, and 3.
Appendix E Additional variables under the Gram–Charlier density
E.1 CBOE VIX
The CBOE VIX can be calculated analytically using the Gram–Charlier density with the following proposition.
Proposition 2
Suppose that stock price is described by
$$\begin{aligned} S_{T} = F_{t}^{T} e^{\left( -\frac{1}{2}\sigma ^2 + \mu _{c} \right) \tau + \sigma \sqrt{\tau }y}, \end{aligned}$$
where y is an extension of the standard normal distribution to include higher moments using the Gram–Charlier density and
\(\mu _{c}\)
is the convexity adjustment term. Then the VIX is given by
$$\begin{aligned} \text{ VIX } = 100 \sqrt{\sigma ^2 - 2 \mu _{c}} \end{aligned}$$
(E26)
Proof
Demeterfi et al. (1999) present a method to replicate variance swaps with European options. Following part of their procedure, for a differential stock price form of
$$\begin{aligned} \frac{dS_t}{S_t} = \left( r - q \right) dt + \sigma _t dB_t \end{aligned}$$
where r, q, and \(\sigma \) is risk-free rate, continuous dividend rate, and the volatility parameters, respectively, the following can be obtained:
$$\begin{aligned} \text{ VIX}^2 = \frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ \int _{t}^{T}{\frac{dS_t}{S_t}} - \ln \frac{S_T}{S_t} \right] \times 100^2 \end{aligned}$$
(E27)
With some algebraic manipulation, an intuitive formula can be found:
$$\begin{aligned} \text{ VIX } = 100 \sqrt{-\frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ \ln \frac{S_T}{S_t e^{\left( r - q \right) \tau }} \right] } \end{aligned}$$
(E28)
Using the integral form of stock price derived using the Gram–Charlier region, with some algebra, the following can be obtained.
$$\begin{aligned} \text{ VIX}^2&= -\frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ \ln \frac{S_{T}}{S_{t}e^{(r - q) \tau }} \right] \times 100^2 \end{aligned}$$
$$\begin{aligned}&= -\frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ \left( -\frac{1}{2}\sigma ^2 + \mu _{c} \right) \tau + \sigma \sqrt{\tau } y \right] \times 100^2 \end{aligned}$$
$$\begin{aligned}&= \left[ \left( \sigma ^2 - 2 \mu _{c} \right) - \frac{2}{\tau } \sigma \sqrt{\tau } E_{t}^{\mathcal{Q}} \left[ y \right] \right] \times 100^2 \end{aligned}$$
$$\begin{aligned}&= \left[ \sigma ^2 - 2 \mu _{c} \right] \times 100^2 \end{aligned}$$
$$\begin{aligned} \implies \text{ VIX }&= 100 \sqrt{\sigma ^2 - 2 \mu _{c}} \end{aligned}$$
(E29)
\(\square \)
This proposition allows the variance swap to be calculated directly from the distribution of the returns, specifically, the moments and the time to maturity. For a stock price model with moments no higher than kurtosis, the VIX is given by
$$\begin{aligned} \text{ VIX } = 100 \sqrt{\sigma ^2 + \frac{2}{\tau } \ln \left[ 1 + \frac{\lambda _1}{3!} \left( \sigma \sqrt{\tau } \right) ^3 + \frac{\lambda _2}{4!} \left( \sigma \sqrt{\tau } \right) ^4 \right] } \end{aligned}$$
(E30)
A simpler form of Eq. (E30) can be obtained by approximating the log and square root, as shown here:
$$\begin{aligned} \text{ VIX } = 100 \sigma \left[ 1 + \frac{\lambda _1}{3!} \sigma \sqrt{\tau } + \frac{\lambda _2}{4!} \sigma ^2\tau - \frac{\lambda _1^2}{72} \sigma ^2\tau + o\left( \sigma ^2 \tau \right) \right] \end{aligned}$$
(E31)
By suppressing kurtosis, this formula shows that introducing negative skewness to returns will result in the VIX becoming smaller than the standard deviation. Originally, without kurtosis and skewness, the two were simply linked by a scaling factor.
The CBOE VIX is used as a benchmark against the VIX, calculated using the BKM method. This VIX can be calculated with
$$\begin{aligned} \text{ VIX } \approx 100 \sqrt{-\frac{2}{\tau } \mu + 2r}. \end{aligned}$$
(E32)
The volatility index can also be calculated using the BKM method:
$$\begin{aligned} \text{ VIX}^2&= -\frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ \ln \frac{S_{T}}{S_{t}e^{r\tau }} \right] \times 100^2 = \left[ -\frac{2}{\tau } E_{t}^{\mathcal{Q}}\left[ R\left( t, \tau \right) \right] + 2r \right] \times 100^2 \end{aligned}$$
(E33)
$$\begin{aligned} \implies \text{ VIX }&\approx 100 \sqrt{-\frac{2}{\tau } \mu + 2r} \end{aligned}$$
(E34)
where
$$\begin{aligned} \mu (t, \tau )&:= e^{r\tau } - 1 - \frac{1}{2} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 \right] - \frac{1}{3!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^3 \right] - \frac{1}{4!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^4 \right] \end{aligned}$$
(E35)
As \(\mu \), the approximation of \(E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right] \), is required, this method introduces errors; however, it does remain model-free.
E.2 Rare disaster concern index
In this paper, the RIX is defined as
$$ {\text{ RIX}} \equiv {\mathbb{V}} - {\mathbb{I}\mathbb{V}} = \frac{{2e^{{r\tau }} }}{\tau }\left\{ {\int\limits_{{K > S_{t} }} {\frac{{\ln (S_{t} /K)}}{{K^{2} }}C(S_{t} ;K,T)dK} + \int_{{K < S_{t} }} {\frac{{\ln (S_{t} /K)}}{{K^{2} }}P(S_{t} ;K,T)dK} } \right\} $$
to include both upside and downside jumps. Originally in Gao et al. (2018), the RIX only included downside jumps:
$$\begin{aligned} \mathbb{R}\mathbb{I}\mathbb{X}^{-} \equiv {\mathbb{V}}^{-} - \mathbb{I}\mathbb{V}^{-} = \frac{2 e^{r\tau }}{\tau } \int _{K < S_t}{\frac{\ln (S_t/K)}{K^2} P(S_t; K, T) dK} \end{aligned}$$
The RIX is calculated from the difference of the variance of log returns (\({\mathbb{V}}\)) and the variance swap (\(\mathbb{I}\mathbb{V}\)).
$$\begin{aligned} \mathbb{I}\mathbb{V}&= \left( \frac{VIX}{100} \right) ^2 = \sigma ^2 - 2 \mu _c \end{aligned}$$
(E36)
$$\begin{aligned} {\mathbb{V}}&= \frac{1}{\tau } E_t^{\mathcal{Q}}\left[ \left( \ln \frac{S_T}{S_t} \right) ^2 \right] = \left( r - q - \frac{1}{2}\sigma ^2 + \mu _c \right) ^2 \tau + \sigma ^2 \end{aligned}$$
(E37)
$$\begin{aligned} \text{ RIX }&= {\mathbb{V}} - \mathbb{I}\mathbb{V} \end{aligned}$$
(E38)
$$\begin{aligned} \implies \text{ RIX }&= \left( r - q - \frac{1}{2}\sigma ^2 + \mu _c \right) ^2 \tau + 2\mu _c \end{aligned}$$
(E39)
E.3 Simple variance swaps
From Martin (2016), the SVIX is given by
$$\begin{aligned} \text{ SVIX}^2 = \frac{1}{\tau } Var_t^{\mathcal{Q}}\left( \frac{R_T}{R_t} \right) \end{aligned}$$
where \(R_T = \frac{S_T}{S_t}\) and \(R_t = e^{r\tau }\). By setting \(q = 0\) and using a more general case of Eq. (2).Footnote 10
$$\begin{aligned} \text{ SVIX}^2&= \frac{1}{\tau } Var_t^{\mathcal{Q}}\left( \frac{R_T}{R_t} \right) = \frac{1}{\tau R_t^2 S_t^2} Var_t^{\mathcal{Q}}\left( S_T \right) \\&= \frac{1}{\tau }\left( e^{\sigma ^2\tau + \left[ 2\mu \left( \sigma \sqrt{\tau } \right) - \mu \left( 2 \sigma \sqrt{\tau } \right) \right] \tau } - 1 \right) \end{aligned}$$
The SVIX can be decomposed with Carr and Madan (2001) to give
$$\begin{aligned} \text{ SVIX } = \frac{2e^{r\tau }}{\tau \left( F_t^T \right) ^2}\left( \int _{0}^{F_t^T}{P(t, \tau , K) dK} + \int _{F_t^T}^{\infty }{C(t, \tau , K) dK} \right) . \end{aligned}$$
(E40)
E.4 Errors of the additional variables
The VIX, RIX, and SVIX errors are shown in Table 10 with the errors of the BKM risk-neutral standard for comparison. From this table, the general trend of having a smaller error when the boundary controlling factor and step sizes are small holds; however, this trend is weaker for the RIX.
Table 10 Errors for risk-neutral standard deviation, VIX, RIX, and SVIX Appendix F BKM and Black-Scholes risk-neutral log returns
Using the standard Black-Scholes stock price model,
$$\begin{aligned} S_T = S_t e^{\left( r - \frac{1}{2} \sigma ^2 \right) \tau + \sigma B_{\tau }}, \end{aligned}$$
(F41)
where \(B_{\tau }\) is the standard Brownian motion, the expected value of log returns is
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right] = E_{t}^{\mathcal{Q}} \left[ \left( r - \frac{1}{2} \sigma ^2 \right) \tau + \sigma B_{\tau } \right] = \left( r - \frac{1}{2} \sigma ^2 \right) \tau . \end{aligned}$$
(F42)
From this, the BKM’s approximation can be compared like so:
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right]&\approx e^{r\tau } - 1 - \frac{1}{2} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 \right] - \frac{1}{3!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^3 \right] - \frac{1}{4!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^4 \right] . \end{aligned}$$
As the BKM approximates the exponential term when used with \(R(t, \tau )\), this is also done to \(e^{r \tau }\). The result is
$$\begin{aligned} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) \right]&\approx 1 + r\tau + \frac{1}{2} (r\tau )^2 + \frac{1}{3!} (r\tau )^3 + \frac{1}{4!} (r\tau )^4 - 1 \\&\quad - \frac{1}{2} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^2 \right] - \frac{1}{3!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^3 \right] - \frac{1}{4!} E_{t}^{\mathcal{Q}} \left[ R\left( t, \tau \right) ^4 \right] . \end{aligned}$$
Expanding this further and simplifying, Eq. (7) can be obtained.
Appendix G Error envelope derivation
Using a simple curve was sufficient to capture the main characteristics of the error.
$$\begin{aligned} Y&= \text{ Errors } \text{(Peaks } (+ \text{ or } -)) \end{aligned}$$
(G43)
$$\begin{aligned} x&= \text{ Corresponding } \Delta K \end{aligned}$$
(G44)
$$\begin{aligned} X&= \begin{bmatrix} x&x^2 \end{bmatrix} \end{aligned}$$
(G45)
For \(y = \beta _1 x + \beta _2 x^2\)
$$\begin{aligned} Y&= X \beta \end{aligned}$$
(G46)
$$\begin{aligned} \implies \beta&= \left( X^{T} X \right) ^{-1} X^{T} Y \end{aligned}$$
(G47)
For the positive envelope and negative envelope, the coefficients are assigned to \(\beta ^{+}\) and \(\beta ^{-}\), respectively. The symmetric envelope and trend can be found from \(\beta ^{s} = \frac{\beta ^{+} - \beta ^{-}}{2}\) and \(\beta ^{t} = \frac{\beta ^{+} + \beta ^{-}}{2}\), respectively. From this, the envelope component equations are given by
$$\begin{aligned} E^{s}&= X \beta ^{s} \end{aligned}$$
(G48)
$$\begin{aligned} E^{t}&= X \beta ^{t} \end{aligned}$$
(G49)
The positive and negative envelopes are therefore
$$\begin{aligned} E^{+} = X \beta ^{s} + X \beta ^{t}, \qquad E^{-} = -X \beta ^{s} + X \beta ^{t} \end{aligned}$$
(G50)
To capture behaviour of the oscillations, the same quadratic model was used. Therefore, the coefficients were calculated the same way. The coefficient of the oscillations, denoted as \(\beta ^{\omega }\), forms the following oscillating function:
$$\begin{aligned} \Omega = \sin \left( \frac{2\pi }{X\beta ^{\omega }} x \right) \end{aligned}$$
(G51)
Combining the envelope, trend, and oscillating function forms the following model:
$$\begin{aligned} \begin{aligned} \text{ Error } \text{ Model }&= E^{s} \Omega + E^{t} \\&= X \beta ^{s} \sin \left( \frac{2\pi }{X\beta ^{\omega }} x \right) + X \beta ^{t} \end{aligned} \end{aligned}$$
(G52)
As \(X = \begin{bmatrix} x&x^2 \end{bmatrix}\), the model describes the error as changing quadratically in both the magnitude and period. Due to the specification of the model, when x (viz. \(\Delta K\)) is zero, the error vanishes.
Appendix H Errors from the volatility, cubic, and quartic contracts
The BKM method utilizes three contracts formed by Carr and Madan’s payoff decomposition function. To test the accuracy of the BKM estimators, the components within these estimators, the three contracts, can also be tested.
As the risk-neutral moments are known, the values of the contract can be calculated like so:
$$\begin{aligned} e^{r\tau } V&= \sigma ^2 \tau + \mu ^2 \end{aligned}$$
(H53)
$$\begin{aligned} e^{r\tau } W&= \lambda _1 \left( \sigma ^2\tau \right) ^{\frac{3}{2}} + 3 \mu \sigma ^2\tau + \mu ^3 \end{aligned}$$
(H54)
$$\begin{aligned} e^{r\tau } X&= \left( \lambda _2 + 3 \right) \left( \sigma ^2 \tau \right) ^2 + 4 \lambda _1 \mu \left( \sigma ^2\tau \right) ^{\frac{3}{2}} + 6 \mu ^2 \sigma ^2 \tau + \mu ^4 \end{aligned}$$
(H55)
For this exact calculation, \(\displaystyle \mu = \left( r - \frac{1}{2} \sigma ^2 + \mu _c \right) \tau \), this uses the Black-Scholes and Gram–Charlier model (Eq. (8)). This can be used to test the accuracy of the calculation of each contract.