Skip to main content
Log in

Fractional Integration and Volatility Transmission Between Real Estate and Stock Markets: Novel Evidence from a FIGARCH-BEKK Approach

  • Published:
The Journal of Real Estate Finance and Economics Aims and scope Submit manuscript

Abstract

This paper examines the non-linear integration between the real estate and stock market for a series of developed markets namely UK, Germany, Australia, Hong-Kong, Japan, Singapore and the US. The period of analysis covers different market phases for these countries. We examine the volatility dynamics of the real estate and stock market in the UK and Germany within a novel FIGARCH-BEKK model. Our results reveal evidence of a common long-term fractional integration between real estate and stock market for these two countries. Moreover, when there is a lower common order of fractional integration, there might also be a significant bilateral or unilateral volatility spillover effect between real estate and stock market. Robustness tests confirm the consistency of the FIGARCH-BEKK model even during the global financial crisis. Additional tests capture the existence of volatility spillovers and fractional integration in the rest of countries (Australia, Hong-Kong, Japan, Singapore and the US) under examination. Our findings entail significant implications for investors and policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We would like to thank an anonymous referee for his/her suggestion to extend our analysis to other countries.

  2. The full name of the model is Fractional Integrated Generalised Autoregressive Conditional Heteroskedastic—BEKK model. The full GARCH-BEKK and the univariate FIGARCH models is the result of the FIGARCH-BEKK model.

  3. A more implicit model, and closer to Davidson (2004) approach, is developed in the next section. We name this model VECH-HYGARCH, though there are some constraints and it is not a fully parameterized one.

  4. Such a model is the one presented in the previous section, the HYGARCH-BEKK approach.

  5. In Appendix and in the main body of the text we cite the authors that are related with the construction of these two models that are used here.

References

  • Aalbers, M. (2016). The Financialization of Housing: A political economy approach. Rouledge Studies in the Modern World Economy.

  • Ambrose, B. W., Ancel, E., & Griffiths, M. D. (1992). The fractal structure of Real Estate investment trust returns: A search for evidence of market segmentation and nonlinear dependency. Journal of the American Real Estate and Urban Economics Association, 20, 25–54.

    Article  Google Scholar 

  • Apergis, N., & Lambrinidis, L. (2007). More evidence on the relationship between the stock and real estate market’. Journal of Social Science Research Network, 17(1), 24–50.

    Google Scholar 

  • Baba, Y., Engle, R. F., Kraft, D., & Kroner, K. F. (1989). Multivariate Simultaneous Generalized ARCH, manuscript. University of California at San Diego.

    Google Scholar 

  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5–59.

    Article  Google Scholar 

  • Baillie, R. T., & Bollerslev, T. (1994). Cointegration, Fractional Cointegration, and Exchange Rate Dynamics, The. Journal of Finance, 49(2), 737–745.

    Article  Google Scholar 

  • Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 74, 3–30.

    Article  Google Scholar 

  • Bollerslev, T., & Mikkelsen, H. (1996). Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151–184.

    Article  Google Scholar 

  • Brunetti, C., & Gilbert, C. L. (2000). Bivariate FIGARCH and fractional cointegration. Journal of Empirical Finance., 7, 509–530.

    Article  Google Scholar 

  • Caporale, G.-M., Gil-Alana, L. A., & Orlando, J. C. (2016). Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach. International Journal of Finance and Economics, 21(2), 143–153.

    Article  Google Scholar 

  • Case, K. E., & Shiller, R. J. (2003). Is there a bubble in the housing market? Brookings Papers on Economic Activity, 2, 299–342.

    Article  Google Scholar 

  • Chen, N. K. (2001). Asset price fluctuations in Taiwan: Evidence from stock and real estate prices 1973 to 1992. Journal of Asian Economics, 12(2), 215–232.

    Article  Google Scholar 

  • Cheung, Y. W., & Lai, K. S. (1993). Long-run purchasing power parity during the recent float. Journal of International Economics, 34(1–2), 181–192.

    Article  Google Scholar 

  • Cotter, J., & Stevenson, S. (2006). Multivariate modeling of daily REIT volatility. The journal of Real Estate Finance and Economics, 32, 305–325.

    Article  Google Scholar 

  • Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business and Economics Statistics, 22(1), 16–29.

    Article  Google Scholar 

  • Deutsche Bundesbank. (2016). The German housing market in the low-interest rate environment, guest article by A. Dombret in ‘immobilien and finanzierung, available at:www.bundesbank.de/Redaktion/EN/Standardartikel/Press/Contributions/2014_01_01_dombret_immobilien_finanzierung.html.

  • Driessen, J., & Laeven, L. (2007). International portfolio diversification benefits: Cross-country evidence from a local perspective. Journal of Banking & Finance, 31(6), 1693–1712.

    Article  Google Scholar 

  • Eichholtz, P. M. A., & Hartzell, D. J. (1996). Property shares, appraisals and the stock market: An international perspective. The Journal of Real Estate Finance and Economics, 12, 163–178. https://doi.org/10.1007/BF00132265.

    Article  Google Scholar 

  • Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11(1), 122–150.

    Article  Google Scholar 

  • Geltner, D. (1991). Smoothing in appraisal-based returns. The Journal of Real Estate Finance and Economics, 4(3), 327–345.

    Article  Google Scholar 

  • Gil-Alana, L., Yaya, O., Akinsomi, O., & Coskun, Y. (2020). How do stocks in BRICS co-move with real estate stocks? International Review of Economics & Finance, 69, 93–101.

    Article  Google Scholar 

  • Green, R. K. (2002). Stock prices and house prices in California: New evidence of a wealth effect? Regional Science and Urban Economics, 32(6), 775–783.

    Article  Google Scholar 

  • Gyourko, J., & Keim, D. (1992). What does the stock market tell us about Real Estate returns? Journal of the American Real Estate and Urban Economics Association, 20(3), 457–485.

    Article  Google Scholar 

  • Heaney, R., & Sriananthakumar, S. (2012). Time-varying correlation between stock market returns and real estate returns. Journal of Empirical Finance, 19, 583–594.

    Article  Google Scholar 

  • Hoesli, M., & Reka, K. (2013). Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets, The. Journal of Real Estate Finance and Economics, 47, 1–35.

    Article  Google Scholar 

  • Hui, E. C. M., & Ng, I. M. H. (2012). Wealth effect, credit price effect, and the relationships between Hong Kong’ property market and stock market. International Journal of Strategic Property Management, 30(3), 255–273.

    Google Scholar 

  • Ibbotson, R. G., & Siegel, L. B. (1984). Real estate returns: A comparison with other investments. Real Estate Economics, 12(3), 219–242.

    Article  Google Scholar 

  • Kapopoulos, F., & Siokis. (2005). Stock and real estate prices in Greece: Wealth versus credit-price effect. Applied Economics Letters, 12(2), 125–128.

    Article  Google Scholar 

  • Kiohos, A., Babalos, V., & Koulakiotis, A. (2017). Wealth effect revisited: Novel evidence on long term co-memories between real estate and stock markets. Finance Research Letters, 20, 217–222.

    Article  Google Scholar 

  • Kofner, S. (2014). The German housing system: Fundamentally resilient? Journal of Housing and the Built Environment, 29(2), 255–275.

    Article  Google Scholar 

  • Li, Y., & Wang, K. (1995). The predictability of REIT returns and market segmentation. Journal of Real Estate Research, 10(4), 471–482.

    Article  Google Scholar 

  • Lin, P., & Fuerst, F. (2014). The integration of direct real estate and stock markets in Asia. Applied Economics, 46(12), 1323–1334.

    Article  Google Scholar 

  • Ling, D. C., & Naranjo, A. (1999). The integration of commercial real estate markets and stock markets. Real Estate Economics, 27(3), 515–528.

    Article  Google Scholar 

  • Liow, H. K. (2012). Co-movements and correlations across Asian securitized real estate and stock markets. Real Estate Economics, 40, 97–129.

    Article  Google Scholar 

  • Liow, K., & Yang, H. S. (2005). Long-term co-memories and short-run adjustment: Securitized real estate and stock markets. The Journal of Real Estate Finance and Economics, 31, 283–300.

    Article  Google Scholar 

  • Liu, C., Hartzell, D., Greig, W., & Grissom, T. (1990). The integration of the Real Estate Market and the Stock Market: Some Preliminary Evidence. The Journal of Real Estate Finance and Economics, 3, 261–282.

    Article  Google Scholar 

  • Liu, C., & Mei, J. (1992). The predictability of returns on equity REITs and their co-movement with other assets. The Journal of Real Estate Finance and Economics, 5, 401–418.

    Article  Google Scholar 

  • Liu, Y.-S., & Su, C. W. (2010). The relationship between the real estate and stock markets of China: Evidence from a nonlinear model. Applied Financial Economics, 20(22), 1741–1749.

    Article  Google Scholar 

  • Lizieri, C., & Satchell, S. (1997). Interactions between property and equity markets: An investigation of linkages in the United Kingdom 1972–1992. The Journal of Real Estate Finance and Economics, 15(1), 11–26.

    Article  Google Scholar 

  • McMillan, D. (2012). Long-run stock price-house relation: Evidence from an ESTR model. Economic Bulletin, 32, 1737–1746.

    Google Scholar 

  • Miles, M., Cole, R., & Guikey, D. (1990). A different look at Commercial Real Estate returns. Journal of the American Real Estate and Urban Economics Association, 18, 403–430.

    Article  Google Scholar 

  • Oikarinen, E. (2006). Price linkages between stock, bond and housing markets: Evidence from Finnish data. No.1004. ETLA Discussion Papers, the Research Institute of the Finnish Economy (ETLA).

  • Okunev, J., & Wilson, P. (1997). Using Nonlinear tests to examine the integration between Real Estate and Stock Markets. Real Estate Economics, 25, 487–503.

    Article  Google Scholar 

  • Okunev, J., Wilson, P., & Zurbruegg, R. (2000). The causal relationship between real Estate and Stock Markets. The Journal of Real Estate Economics and Finance, 21, 251–261.

    Article  Google Scholar 

  • Quan, D., & Titman, S. (1999). Do real estate prices and stock prices move together? An international analysis. Real Estate Economics, 27(2), 183–207.

    Article  Google Scholar 

  • Ross, S. A., & Zisler, R. C. (1991). Risk and return in real estate. The Journal of Real Estate Finance and Economics, 4(2), 175–190.

    Article  Google Scholar 

  • Scharmanski, A. (2012). In the Wake of the Euro Debt Crisis. Impact of the Euro Debt Crisis on the German Real Estate Market, Hamburg, Quantum Fokus.

  • Sim, S., & Chang, B. (2006). Stock and real estate markets in Korea. Journal of Economic Research, 11(1), 103–126.

    Google Scholar 

  • Stevenson, S. (2002). An Examination of Volatility Spillovers in REIT Returns. Journal of Real Estate Portfolio Management, 8(3), 229–238.

    Article  Google Scholar 

  • Su, C. W. (2011). Non-linear causality between the stock and real estate markets of Western European Countries: Evidence from rank tests. Economic Modelling, 28, 845–851.

    Article  Google Scholar 

  • Sutton, G. D. (2002). Explaining changes in house prices, BIS Quarterly Review, 46–55.

  • Tsai, I. (2015). Dynamic information transfer in the United States housing and stock markets. The North American Journal of Economics and Finance, 34, 215–230.

    Article  Google Scholar 

  • Tsai, I., Lee, C., & Chiang, M. (2012). The asymmetric wealth effect in the US housing and stock markets: Evidence from the threshold co-integration model. The Journal of Real Estate Finance and Economics, 45(4), 1005–1020.

    Article  Google Scholar 

  • Wilson, P., & Okunev, J. (1999). Long-term dependencies and long-run non-periodic co-cycles: Real estate and stock markets. Journal of Real Estate Research, 18, 257–278.

    Article  Google Scholar 

  • Wilson, P., Okunev, J., & Ta, G. (1996). Are Real Estate and securities markets integrated? Journal of Property Valuation & Investment, 14, 7–24.

    Article  Google Scholar 

  • Worzala, E. & Vandell, K. (1993). International direct real estate investments as alternative portfolio assets for institutional investors: an evaluation. Paper presented at the AREUEA meetings, CA, USA.

  • Zhou, J. (2010). Comovement of international real estate securities returns: A wavelet analysis. Journal of Property Research, 27, 357–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Kyriakou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A1. The FIGARCH-BEKK approach is modeled as:

$$\Phi (L){\left(1-L\right)}^d\ast {U}_t=C{C}^{\prime }+\left(1-A{A}^{\prime }(L)\right)\ast {V}_t<=>$$

where, \({V}_{t}={U}_{t}-{H}_{t}\)

$${\displaystyle \begin{array}{c}\Phi (L){\left(1-L\right)}^d\ast {U}_t=C{C}^{\prime }+\left(1-A{A}^{\prime }(L)\right)\ast \left({U}_t-{H}_t\right)<=>\\ {}\Phi (L){\left(1-L\right)}^d\ast {U}_t=C{C}^{\prime }+{U}_t-A{A}^{\prime }(L){U}_t-{H}_t+A{A}^{\prime }(L){H}_t<=>\\ {}{H}_t=C{C}^{\prime }+A{A}^{\prime }(L){H}_t- AA^{\prime }(L){U}_t+{U}_t-\Phi (L){\left(1-L\right)}^d\ast {U}_t<=>\\ {}{H}_t=C{C}^{\prime }+A{A}^{\prime }(L){H}_t-A{A}^{\prime }(L){U}_t+{U}_t-{\mathrm{UFILTER}}_t<=>\\ {}{H}_t=C{C}^{\prime }+{AH}_t(L){A}^{\prime }-{AU}_t(L){A}^{\prime }+{BU}_t{B}^{\prime }-{\mathrm{UFILTER}}_t<=>\\ {}{H}_t=C{C}^{\prime }+{AH}_{t-1}{A}^{\prime }-{AU}_{t-1}{A}^{\prime }+{BU}_t{B}^{\prime }-{QU}_{t-2}{Q}^{\prime }-{\mathrm{UFILTER}}_t\end{array}}$$

where,

$${\mathrm{UFILTER}}_{\mathrm{t}}=\Phi (\mathrm{L}){(1-\mathrm{L})}^{\mathrm{d}}*{\mathrm{U}}_{\mathrm{t}}$$

Our FIGARCH-BEKK (1, d, 2) model takes the following form:

$${H}_{t}=C{C}^{^{\prime}}+{A}^{^{\prime}}{H}_{t-1}A+{{BU}_{t}}^{2}{B}^{^{\prime}}-{AU}_{t-1}^{2}{A}^{^{\prime}}-{QU}_{t-2}^{2}{Q}^{^{\prime}}-{\text{KUFILTER}}_{t}{K}^{^{\prime}}$$
(11)

where,

$${\mathrm{KUFILTER}}_{t}{K}^{^{\prime}}=\left(\begin{array}{cc}{\kappa }_{11}& 0\\ 0& {\kappa }_{22}\end{array}\right)*\left(\begin{array}{cc}{\left(1-L\right)}^{d1}& 0\\ 0& {\left(1-L\right)}^{d2}\end{array}\right)*{U}_{t}*{\left(\begin{array}{cc}{\kappa }_{11}& 0\\ 0& {\kappa }_{22}\end{array}\right)}^{^{\prime}}$$

From the above it follows naturally to test the hypothesis d1 = d2 within this framework.

Baba et al. (1989) developed the GARCH-BEKK (1, 1) model as follows:

$$\begin{array}{c}{\mathrm{h}}_{11,\mathrm{t}} = {\upomega }_{1} + {\mathrm{\alpha }}_{11}^{2}*{\upvarepsilon }_{1,\mathrm{t}-1}^{2} + 2*{\upbeta }_{11}*{\upbeta }_{21}*{\mathrm{h}}_{1,\mathrm{t}-1}*{\mathrm{h}}_{2,\mathrm{t}-1} + {\mathrm{\alpha }}_{21}^{2}*{\upvarepsilon }_{2,\mathrm{t}-1}^{2}\\ {\mathrm{h}}_{22,\mathrm{t}} = {\upomega }_{1} + {\mathrm{\alpha }}_{12}^{2}*{\upvarepsilon }_{1,\mathrm{t}-1}^{2} + 2*{\upbeta }_{22}*{\upbeta }_{12}*{\mathrm{h}}_{1,\mathrm{t}-1}*{\mathrm{h}}_{2,\mathrm{t}-1} + {\mathrm{\alpha }}_{22}^{2}*{\upvarepsilon }_{2,\mathrm{t}-1}^{2}\\ {\mathrm{h}}_{12,\mathrm{t}} ={\upomega }_{12} +{\mathrm{\alpha }}_{11}{*\mathrm{\alpha }}_{12}*{\upvarepsilon }_{1,\mathrm{t}-1}^{2} +{(\upbeta }_{21}*+{\upbeta }_{12}+{\upbeta }_{11}*{\upbeta }_{22})*{\mathrm{h}}_{1,\mathrm{t}-1}*{\mathrm{h}}_{2,\mathrm{t}-1}+{\mathrm{\alpha }}_{21}*{\mathrm{\alpha }}_{22}*{\upvarepsilon }_{2,\mathrm{t}-1}^{2}\end{array}$$
(12)

We extend the multivariate GARCH-BEKK (1, 1) model to the FIGARCH-BEKK (1, d, 1) motivated by two specifications:

  1. 1.

    The variance–covariance matrix is positive definite.

  2. 2.

    Stationarity is ensured by restrictions in the variance–covariance matrix.

The bivariate FIGARCH-BEKK (1, d, 1) model may be represented as follows:

$$\begin{array}{c}{\mathrm{h}}_{\mathrm{jj},\mathrm{t}}=({{\uplambda }_{\mathrm{jj}}+\upvarepsilon }_{\mathrm{j},\mathrm{t}}*{{\uplambda }_{\mathrm{ij}}+\upvarepsilon }_{\mathrm{i},\mathrm{t}}{)}^{2}*\left(\mathrm{L}\right)+[{\upomega }_{\mathrm{j}}/(1-{\upbeta }_{\mathrm{jj}}(1))+({\upomega }_{\mathrm{j}}/1-{\upbeta }_{\mathrm{ij}}(1))] <=>\\ {\mathrm{h}}_{\mathrm{jj},\mathrm{t}}=({{\uplambda }_{\mathrm{jj}}*+\upvarepsilon }_{\mathrm{j},\mathrm{t}}*{{\uplambda }_{\mathrm{ij}}*\upvarepsilon }_{\mathrm{i},\mathrm{t}}{)}^{2}*\left(\mathrm{L}\right)+[{2\upomega }_{\mathrm{j}}/(1+{\upbeta }_{\mathrm{ij}}{\upbeta }_{\mathrm{jj}}((1))\end{array}$$
(13)
$${\mathrm{h}}_{12,\mathrm{t}} ={\upomega }_{12} +{\mathrm{\alpha }}_{11}{*\mathrm{\alpha }}_{12}*{\upvarepsilon }_{1,\mathrm{t}-1}^{2} +{(\upbeta }_{21}*+{\upbeta }_{12}+{\upbeta }_{11}*{\upbeta }_{22})*{\mathrm{h}}_{1,\mathrm{t}-1}*{\mathrm{h}}_{2,\mathrm{t}-1}+{\mathrm{\alpha }}_{21}*{\mathrm{\alpha }}_{22}*{\upvarepsilon }_{2,\mathrm{t}-1}^{2}$$
(14)

It follows from the results in Bollerslev and Mikkelsen (1996) that positive definiteness in the bivariate diagonal FIGARCH-BEKK (1, d, 1) model is ensured if

$${\uplambda }_{\mathrm{jj}}=1-\{[{\Phi }_{\mathrm{jj}}(\mathrm{L})(1-\mathrm{L}{)}_{j}^{d}]/[1-{\upbeta }_{\mathrm{jj}}(\mathrm{L})]\}$$
$${\upbeta }_{\mathrm{jj}}-{\mathrm{d}}_{\mathrm{j}}\le \left(1/3\right)\left(2-{\mathrm{d}}_{\mathrm{j}}\right),{\mathrm{d}}_{\mathrm{j}}\left[{\Phi }_{\mathrm{jj}}-\left(1/2\right)\left(1-{\mathrm{d}}_{\mathrm{j}}\right)\right]\le {\upbeta }_{\mathrm{jj}}{(\Phi }_{\mathrm{jj}}-{\upbeta }_{\mathrm{jj}}+{\mathrm{d}}_{\mathrm{j}})$$

and

$${\uplambda }_{\mathrm{jj},\mathrm{t}}=1-\{[{\Phi }_{\mathrm{ij}}(\mathrm{L})(1-\mathrm{L}{)}_{\mathrm{j}}^{\mathrm{d}}]/[1-{\upbeta }_{\mathrm{ij}}(\mathrm{L})]\}$$
$${\upbeta }_{\mathrm{jj}}-{\mathrm{d}}_{\mathrm{j}}\le \left(1/3\right)\left(2-{\mathrm{d}}_{\mathrm{j}}\right),{\mathrm{d}}_{\mathrm{j}}\left[{\Phi }_{\mathrm{ij}}-\left(1/2\right)\left(1-{\mathrm{d}}_{\mathrm{j}}\right)\right]\le {\upbeta }_{\mathrm{ij}}{(\Phi }_{\mathrm{ij}}-{\upbeta }_{\mathrm{ij}}+{\mathrm{d}}_{\mathrm{j}}$$
(15)

The above processes are stationary for all 0 ≤ dj ≤ 1, and j = 1, 2.

A2. We also model real estate and stock market returns with long memory in variance in a bivariate setting. The extension of the simple VECH-HYGARCH variance equation is as follows:

$$\begin{array}{c}{h}_{11,t}={c}_{11}*\left(1-{\beta }_{11}\right)+{\beta }_{11}*{h}_{11,t-1}+{\alpha }_{11}*{\varepsilon }_{11,t}^{2}-\left({\beta }_{11}-\left(1-{\alpha }_{11}\right)\right)*{\delta }_{11})*{\varepsilon }_{11,t-1}^{2}-\\ {\alpha }_{11}*{\text{ufilter}}_{11,t}+{\alpha }_{11}*{\delta }_{11}*{\text{ufilter}}_{11,t-1}\end{array}$$
(16a)
$$\begin{array}{c}{h}_{12,t}={c}_{12}*\left(1-{\beta }_{12}\right)+{\beta }_{12}*{h}_{12,t-1}+{\alpha }_{12}*{\varepsilon }_{12,t}^{2}-\left({\beta }_{12}-\left(1-{\alpha }_{12}\right)\right)*{\delta }_{12})*{\varepsilon }_{12,t-1}^{2}-\\ {\alpha }_{12}*{\text{ufilter}}_{12,t}+{\alpha }_{12}*{\delta }_{12}*{\text{ufilter}}_{12,t-1}\end{array}$$
(16b)
$$\begin{array}{c}{h}_{22,t}={c}_{22}*\left(1-{\beta }_{22}\right)+{\beta }_{22}*{h}_{22,t-1}+{\alpha }_{22}*{\varepsilon }_{22,t}^{2}-\left({\beta }_{22}-\left(1-{\alpha }_{22}\right)\right)*{\delta }_{22})*{\varepsilon }_{22,t-1}^{2}-\\ {\alpha }_{22}*{\text{ufilter}}_{22,t}+{\alpha }_{22}*{\delta }_{22}*{\text{ufilter}}_{22,t-1}\end{array}$$
(16c)

where,

$$\begin{array}{c}{\mathrm{\alpha }}_{11}*{\mathrm{ufilter}}_{11,\mathrm{t}} ={\mathrm{\alpha }}_{11}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{11,\mathrm{t}}^{2}\\ {\mathrm{\alpha }}_{22}*{\mathrm{ufilter}}_{22,\mathrm{t}} ={\mathrm{\alpha }}_{22}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{22,\mathrm{t}}^{2}\\ {\mathrm{\alpha }}_{12}*{\mathrm{ufilter}}_{12,\mathrm{t}} ={\mathrm{\alpha }}_{12}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{12,\mathrm{t}}^{2}\end{array}$$

and

$$\begin{array}{c}{\mathrm{\alpha }}_{11}*{\updelta }_{11}*{\mathrm{ufilter}}_{11,\mathrm{t}-1}={\mathrm{\alpha }}_{11}{\updelta }_{11}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{11,{\mathrm{t}}^{-1}}^{2}\\ {\mathrm{\alpha }}_{22}*{\updelta }_{22}*{\mathrm{ufilter}}_{22,\mathrm{t}-1}={\mathrm{\alpha }}_{22}{\updelta }_{22}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{22,{\mathrm{t}}^{-1}}^{2}\\ {\mathrm{\alpha }}_{12}*{\updelta }_{12}*{\mathrm{ufilter}}_{12,\mathrm{t}-1}={\mathrm{\alpha }}_{12}{\updelta }_{12}(1-\mathrm{L}{)}^{\mathrm{d}} {\upvarepsilon }_{12,{\mathrm{t}}^{-1}}^{2}\end{array}$$

A3. The return equation of each country’s (Australia, Hong Kong, Japan, Singapore and the US) real estate and stock price indexes under study is influenced by the constant and previous day’s returns and has the following form for the constrained GARCH-BEKK model:

$${R}_{i,t =}{b}_{0}+{b}_{1}*{R}_{i,t-1}+{u}_{t }|{\Omega }_{t-1}\sim N(0,{H}_{t }) for i=\mathrm{1,2}$$
(17)
$${u}_{i,t}={R}_{i,t}-{b}_{i } for i=\mathrm{1,2}$$
(18)

where, \({R}_{i,t}\) is the real estate or stock price return for the five countries under study.

\({b}_{i}\) is the martingale constant drift for real estate or stock price index returns.

Next, we apply the two-variable constrained and full GARCH-BEKK model (Engle & Kroner, 1995) for the variance as:

$${H}_{t }=C{C}^{^{\prime}}+{A}^{^{\prime}}{H}_{t-1 }A+{B}^{^{\prime}}{\varepsilon }_{t-1}*{\varepsilon }_{t-1}^{1}*{{\varepsilon }_{t-1}^{^{\prime}}}^{^{\prime}}B$$
(19)

where,

\({H}_{t-1}\) is the volatility vector. \(A and {A}^{^{\prime}}\) are the usual and the transposed constrained term respectively. \({\varepsilon }_{t}\) is the error term. \(C and {C}^{^{\prime}}\) are the constant constrained vector terms, the first is the usual one and the second is the transposed term. \(B and {B}^{^{\prime}}\) are the error coefficient constrained vectors, the first is the usual one and the second is the transposed term.

In the constrained GARCH-BEKK model some of the variance’s cross correlations were omitted as they have been set equal to zero. However, the full version of the GARCH-BEKK model has all the variance parameters without setting zero some of the cross-product correlations. This is the difference between these two models as applied on the article.

The parameters of the two-variable systems are estimated by computing the conditional log-likelihood function for each time period as:

$${L}_{t }\left(\Theta \right)=-\mathrm{log}2\uppi -\frac{1}{2}\mathrm{log}\left|{H}_{t+1 }\right|=\frac{1}{2}E{({\varepsilon }_{t})}^{^{\prime}}(\Theta ){H}_{t}^{-1}(\Theta )E({\varepsilon }_{t})(\Theta )$$
$${\mathrm{and} L}_{t }\left(\Theta \right)=\sum_{t=1}^{T}{L}_{t }\left(\Theta \right)$$
(20)

where, \(\Theta\) is the vector of all volatility and error estimations parameters. The numerical maximization of the log-likelihood function follows the BHHH or the BFGS algorithm which accounts for the maximum likelihood estimates.

A4. Following Cotter and Stevenson (2006) we believe that the FIGARCH(1,d,1) model best captures the volatility in the real estate and also in stock price markets. The conditional variance of the FIGARCH (1,d,1) assumes the following form:

$${R}_{t =}{b}_{0}+{b}_{1}*{R}_{i,t-1}+{u}_{t}$$
(21)
$${u}_{t}={R}_{t}-{b}_{0}$$
(22)
$${\sigma }_{t}^{2}=c+\beta {\sigma }_{t-1}^{2}+[1-\beta L-(1-eL)(1-L{)}^{d}]{\varepsilon }_{t}^{2}$$
(23)

The FIGARCH (p,d,q) model contains two different models for two different values of d. Taking the value 0 to d we get the covariance-stationary GARCH(p,q) model while the IGARCH model results from d = 1. Values of d vary between 1 and 0 allowing us to account for the long-term dependence in the conditional variance. If 0 < d < 0.5, the series are long-term reverting with respect to covariance, and if 0.5 < d < 1, the series are then stationary, however the shocks die away in the short-run rather than in the long-run.

The long memory volatility model, the Fractional Integrated GARCH (FIGARCH), developed by Baillie et al. (1996) who claim that the FIGARCH (p,d,q) model can capture the long memory of financial volatility for daily equity returns through the fractional differencing parameter (d).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriakou, M.I., Koulakiotis, A., Kiohos, A. et al. Fractional Integration and Volatility Transmission Between Real Estate and Stock Markets: Novel Evidence from a FIGARCH-BEKK Approach. J Real Estate Finan Econ 66, 939–962 (2023). https://doi.org/10.1007/s11146-021-09879-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11146-021-09879-5

Keywords

JEL Classifications

Navigation