Skip to main content
Log in

The Anisotropic Spatiotemporal Estimation of Housing Prices

  • Published:
The Journal of Real Estate Finance and Economics Aims and scope Submit manuscript

Abstract

This paper develops a method to identify three-dimensional anisotropic spatiotemporal autocorrelation with an application to real estate markets. A large literature modeling spatiotemporal autocorrelation in house prices assumes that the spatiotemporal dependence structure is isotropic: a function of only distances between observations, and therefore the direction effect is dismissed. If the importance of direction is dismissed or understated, an estimation result would be biased and therefore less precise unless the distribution of observations is in rare case of being directional homogeneous. This paper thus proposes a local anisotropic spatiotemporal approach to improve estimation performance. The methodology is illustrated by using data on single-family house transactions in the San Francisco Bay Area. The empirical results suggest that the proposed three-dimensional anisotropic modeling technique can reduce both in-sample estimation and out-of-sample forecast errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The process is discussed in Section “Methodology”.

  2. The iteration process is discussed in Section “Magnitude Shrinking”.

  3. Apostol (1969) provides more details about the term of a scalar field.

  4. The details of a two-dimensional geographical case are discussed in Appendices A3.

  5. The global gradient of an observation uses all observations in the dataset of a region as its neighboring observations.

  6. Due to the limitation of the length of this paper, only a number of selected shrinking magnitudes are presented in Tables 8, 9, 10, and 11.

References

  • Altman, S. L. (1986). Rotations, Quaternions, and Double Groups. Oxford: Clarendon.

    Google Scholar 

  • Apostol, T. (1969). Calculus, Volume II (2nd ed.), New York: Wiley.

  • Colwell, P. F., & Munneke, H. J. (2009). Directional Land Value Gradients. Journal of Real Estate Finance and Economics, 39, 1–23.

    Article  Google Scholar 

  • Dubé, J., & Legros, D. (2013). A spatio-temporal measure of spatial dependence: an example using real estate data. Papers in Regional Science, 92(1), 19–30.

    Google Scholar 

  • Gillen, K., Thibodeau, T. G., & Wachter, S. (2001). Anisotropic Autocorrelation in Housing Prices. Journal of Real Estate Finance and Economics, 23(1), 5–30.

    Article  Google Scholar 

  • Hamilton, W. R. (1969). Elements of Quaternions. New York: Chelsea Publication Company.

    Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. London: Academic.

    Google Scholar 

  • Kuipers, J. B. (1999). Quaternions and Rotation Sequences: a Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton: Princeton University Press.

    Google Scholar 

  • Oden, N. L., & Sokal, R. R. (1986). Directional Autocorrelation: An Extension of Spatial Correlograms to Two Dimensions. Systematic Zoology, 35, 608–617.

    Article  Google Scholar 

  • Pace, R. K., Barry, R., Clapp, J., & Rodriguez, M. (1998). Spatial–temporal Estimation of Neighborhood Effects. Journal of Real Estate Finance and Economics, 17, 15–33.

    Article  Google Scholar 

  • Pace, R. K., Barry, R., Gilley, O. W., & Sirmans, C. F. (2000). A Method for Spatial- temporal Forecasting with an Application to Real Estate Prices. International Journal of Forecasting, 16, 229–246.

    Article  Google Scholar 

  • Simon, G. (1997). An Angular Version of Spatial Correlations, with Exact Significance Tests. Geographical Analysis, 29(3), 267–278.

    Article  Google Scholar 

  • Zhu, B., Füss, R., & Rottke, N. B. (2011). The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices. Journal of Real Estate Finance and Economics, 42(4), 542–565.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhao.

Appendices

Appendices

A1 Quarternion

Three-dimension rotation by quaternions is widely applied in the engineering field. In order to illustrate the whole process explicitly, some basic algebra definitions and calculations are provided as follows. Similar algebra process (Eqs. 33--62) can be found in the standard literature. (e.g. Hamilton 1969; Altman 1986; Kuipers 1999).

A quaternion \( \overrightarrow{\mathbf{b}} \) is defined as the linear combination of a scalar b 4 and a vector \( \overrightarrow{{\mathbf{b}}_{\mathbf{u}}} \) = (b 1 , b 2 , b 3 ) where b 1 , b 2 , b 3 b 4 are real numbers, namely,

$$ \overline{\mathbf{b}}={\overline{\mathbf{b}}}_{\mathbf{u}}^{\to }+{\mathbf{b}}_4={\mathbf{b}}_1\mathbf{i}+{\mathbf{b}}_2\mathbf{j}+{\mathbf{b}}_3\mathbf{k}+{\mathbf{b}}_4. $$
(33)

The conjugate vector of \( \overrightarrow{\mathbf{b}} \) is

$$ {\overline{\mathbf{b}}}^{{}^{*}}=-{\mathbf{b}}_1\mathbf{i}-{\mathbf{b}}_2\mathbf{j}-{\mathbf{b}}_3\mathbf{k}+{\mathbf{b}}_4. $$
(34)

The dot products of the basis elements (i , j , k) are given by

$$ \mathbf{i}\bullet \mathbf{i}=\mathbf{j}\bullet \mathbf{j}=\mathbf{k}\bullet \mathbf{k}=-1, $$
(35)
$$ \mathbf{i}\bullet \mathbf{j}=\mathbf{k},\kern0.5em \mathbf{j}\bullet \mathbf{k}=\mathbf{i},\kern0.5em \mathbf{k}\bullet \mathbf{i}=\mathbf{j}, $$
(36)
$$ \mathbf{j}\bullet \mathbf{i}=-\mathbf{k},\kern0.5em \mathbf{k}\bullet \mathbf{j}=-\mathbf{i},\kern0.5em \mathbf{i}\bullet \mathbf{k}=-\mathbf{j}. $$
(37)

Assuming there is another vector \( \overrightarrow{\mathbf{c}} \) with a form

$$ \overline{\mathbf{c}}={\mathbf{c}}_1\mathbf{i}+{\mathbf{c}}_2\mathbf{j}+{\mathbf{c}}_3\mathbf{k}+{\mathbf{c}}_4, $$
(38)

the dot product of \( \overrightarrow{\mathbf{b}}\ \mathrm{and}\ \overrightarrow{\mathbf{c}} \) is shown as

$$ \overrightarrow{\mathbf{b}}\bullet \overrightarrow{\mathbf{c}}=-{\mathbf{b}}_1{\mathbf{c}}_1-{\mathbf{b}}_2{\mathbf{c}}_2-{\mathbf{b}}_3{\mathbf{c}}_3+{\mathbf{b}}_4{\mathbf{c}}_4+\left({\mathbf{b}}_1{\mathbf{c}}_4+{\mathbf{b}}_4{\mathbf{c}}_1+{\mathbf{b}}_2{\mathbf{c}}_3-{\mathbf{b}}_3{\mathbf{c}}_2\right)\mathbf{i}+\left(-{\mathbf{b}}_1{\mathbf{c}}_3+{\mathbf{b}}_2{\mathbf{c}}_4+{\mathbf{b}}_3{\mathbf{c}}_1+{\mathbf{b}}_4{\mathbf{c}}_2\right)\mathbf{j}+\left({\mathbf{b}}_1{\mathbf{c}}_2-{\mathbf{b}}_2{\mathbf{c}}_1+{\mathbf{b}}_3{\mathbf{c}}_4+{\mathbf{b}}_4{\mathbf{c}}_3\right)\mathbf{k}. $$
(39)

The parametric part of the dot product \( \overline{\mathbf{b}}\bullet \overline{\mathbf{c}} \) is able to be rewritten in matrix form as the product of the quaternion component matrix of \( \overline{\mathbf{b}} \) and \( \overline{\mathbf{c}} \) or the product of the quaternion metamorphic matrix of \( \overline{\mathbf{c}} \) and \( \overline{\mathbf{b}} \):

$$ \overrightarrow{\mathbf{b}}\bullet \overrightarrow{\mathbf{c}}=\left[\mathbf{i},\mathbf{j},\mathbf{k},1\right]\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_4\hfill \\ {}\hfill {\mathbf{b}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_3\hfill \\ {}\hfill {\mathbf{b}}_4\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_2\hfill \\ {}\hfill -{\mathbf{b}}_1\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_2\hfill & \hfill {\mathbf{b}}_1\hfill & \hfill {\mathbf{b}}_4\hfill \\ {}\hfill -{\mathbf{b}}_1\hfill & \hfill -{\mathbf{b}}_2\hfill & \hfill -{\mathbf{b}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_1\hfill \\ {}\hfill {\mathbf{b}}_2\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_3\hfill \\ {}\hfill {\mathbf{b}}_4\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\mathbf{c}}_1\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{c}}_2\hfill \\ {}\hfill {\mathbf{c}}_3\hfill \end{array}\hfill \\ {}\hfill {\mathbf{c}}_4\hfill \end{array}\right]=\left[\mathbf{i},\mathbf{j},\mathbf{k},1\right]\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{c}}_4\hfill \\ {}\hfill -{\mathbf{c}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{c}}_3\hfill \\ {}\hfill {\mathbf{c}}_4\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{c}}_2\hfill \\ {}\hfill {\mathbf{c}}_1\hfill \end{array}\hfill \\ {}\hfill {\mathbf{c}}_2\hfill & \hfill -{\mathbf{c}}_1\hfill & \hfill {\mathbf{c}}_4\hfill \\ {}\hfill -{\mathbf{c}}_1\hfill & \hfill -{\mathbf{c}}_2\hfill & \hfill -{\mathbf{c}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{c}}_1\hfill \\ {}\hfill {\mathbf{c}}_2\hfill \end{array}\hfill \\ {}\hfill {\mathbf{c}}_3\hfill \\ {}\hfill {\mathbf{c}}_4\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\mathbf{b}}_1\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{b}}_2\hfill \\ {}\hfill {\mathbf{b}}_3\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_4\hfill \end{array}\right]. $$
(40)

In Eq (40), \( \left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_4\hfill \\ {}\hfill {\mathbf{b}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_3\hfill \\ {}\hfill {\mathbf{b}}_4\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_2\hfill \\ {}\hfill -{\mathbf{b}}_1\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_2\hfill & \hfill {\mathbf{b}}_1\hfill & \hfill {\mathbf{b}}_4\hfill \\ {}\hfill -{\mathbf{b}}_1\hfill & \hfill -{\mathbf{b}}_2\hfill & \hfill -{\mathbf{b}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_1\hfill \\ {}\hfill {\mathbf{b}}_2\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_3\hfill \\ {}\hfill {\mathbf{b}}_4\hfill \end{array}\hfill \end{array}\right] \) is the quaternion component matrix, and \( \left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{c}}_4\hfill \\ {}\hfill -{\mathbf{c}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{c}}_3\hfill \\ {}\hfill {\mathbf{c}}_4\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{c}}_2\hfill \\ {}\hfill {\mathbf{c}}_1\hfill \end{array}\hfill \\ {}\hfill {\mathbf{c}}_2\hfill & \hfill -{\mathbf{c}}_1\hfill & \hfill {\mathbf{c}}_4\hfill \\ {}\hfill -{\mathbf{c}}_1\hfill & \hfill -{\mathbf{c}}_2\hfill & \hfill -{\mathbf{c}}_3\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{c}}_1\hfill \\ {}\hfill {\mathbf{c}}_2\hfill \end{array}\hfill \\ {}\hfill {\mathbf{c}}_3\hfill \\ {}\hfill {\mathbf{c}}_4\hfill \end{array}\hfill \end{array}\right] \) is the quaternion metamorphic matrix. The norm of a quaternion is defined by

$$ \mathbf{N}\left(\overrightarrow{\mathbf{b}}\right)=\mathbf{N}\left({\mathbf{b}}_1\boldsymbol{i}+{\mathbf{b}}_2\boldsymbol{j}+{\mathbf{b}}_3\boldsymbol{k}+{\mathbf{b}}_4\right)=\sqrt{{\mathbf{b}}_1^2+{\mathbf{b}}_2^2+{\mathbf{b}}_3^2+{\mathbf{b}}_4^2}. $$
(41)

A unit quaternion is a quaternion of norm one. Equivalently, its parameters b 1 b 2 b 3 b 4 satisfy the following assumption:

$$ {\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}=\mathbf{1}. $$
(42)

Considering a unit quaternion \( \overrightarrow{\mathbf{b}}={\mathbf{b}}_{\mathbf{4}}+\overrightarrow{{\mathbf{b}}_{\mathbf{u}}} \), the equation \( {\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}+{\left|\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}\right|}^{\mathbf{2}}=\mathbf{1} \) implies that there should exist some angle φ satisfying that

$$ \mathbf{co}{\mathbf{s}}^{\mathbf{2}}\boldsymbol{\upvarphi} ={\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}, $$
(43)
$$ {\mathbf{sin}}^{\mathbf{2}}\boldsymbol{\upvarphi} ={\left|\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}\right|}^{\mathbf{2}}. $$
(44)

In fact, there exists a unique φ [0,] satisfying that cos φ = b 4 and \( \mathbf{sin}\boldsymbol{\upvarphi } =\left|\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}\right| \). A unit quaternion is now able to be written in terms of the angle φ and a unit vector \( \mathbf{u}=\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}/\left|\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}\right|: \)

$$ \overrightarrow{\mathbf{b}}=\mathbf{cos}\boldsymbol{\upvarphi } +\mathbf{u}\bullet \bullet \mathbf{sin}\boldsymbol{\upvarphi } . $$
(45)

If there exists a scalar h satisfying that

$$ \mathbf{h}=\sqrt{{{\mathbf{b}}_{\mathbf{1}}}^{\mathbf{2}}+{{\mathbf{b}}_{\mathbf{2}}}^{\mathbf{2}}+{{\mathbf{b}}_{\mathbf{3}}}^{\mathbf{2}}}, $$
(46)

then u is written as

$$ \mathbf{u}=\frac{{\mathbf{b}}_{\mathbf{1}}}{\mathbf{h}}\mathbf{i}+\frac{{\mathbf{b}}_{\mathbf{2}}}{\mathbf{h}}\mathbf{j}+\frac{{\mathbf{b}}_{\mathbf{3}}}{\mathbf{h}}\mathbf{k}. $$
(47)

Unit quaternions are introduced for the purpose of describing the rotations of vectors in a coordinate system. It avoids the problem of gimbal lock caused by Euler angles.

A2 Rotation

After the above preparations, the rotation matrix R is discussed. To start with, for any unit quaternion \( \overrightarrow{\mathbf{b}} \) satisfying

$$ \overrightarrow{\mathbf{b}}={\mathbf{b}}_{\mathbf{4}}+\overrightarrow{{\mathbf{b}}_{\mathbf{u}}}=\mathbf{cos}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)+\mathbf{u}\bullet \mathbf{sin}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right), $$
(48)

and for any vector u  ∈  R 3, the action of the operator on u is equivalent to a rotation of the vector through an angle about \( \overrightarrow{\mathbf{b}} \) as the axis of rotation. Given a point in three-dimensional space, \( \overrightarrow{\mathbf{r}}=\left({\mathbf{r}}_{\mathbf{x}},{\mathbf{r}}_{\mathbf{y}},{\mathbf{r}}_{\mathbf{z}}\right) \). Its quaternion representation is expressed as:

$$ \mathbf{r}=\left(\overrightarrow{\mathbf{r}},\mathbf{0}\right)=\left({\mathbf{r}}_{\mathbf{x}},{\mathbf{r}}_{\mathbf{y}},{\mathbf{r}}_{\mathbf{z}},\mathbf{0}\right) $$
(49)

The rotation function can be defined as follows:

$$ {\mathbf{r}}^{\mathbf{T}}=\overrightarrow{\mathbf{b}}\bullet \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*}, $$
(50)

where

r T :

denotes the transformed vector;

r :

denotes the quaternion representation of the vector \( \overrightarrow{\boldsymbol{r}} \);

\( \overrightarrow{\boldsymbol{b}} \) :

denotes the quaternion representation of an instrumental vector; and

\( {\overrightarrow{\boldsymbol{b}}}^{*} \) :

denotes the congruent of \( \overrightarrow{\boldsymbol{b}} \).

The following shows how the original coordinate system is transformed to a new coordinate system. First, an instrumental vector \( \overrightarrow{\mathbf{b}} \) is defined as:

$$ \overrightarrow{\mathbf{b}}\equiv \left[\begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\right]=\left[\begin{array}{c}\hfill {\mathbf{E}}_{\mathbf{1}}\mathbf{sin}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{E}}_{\mathbf{2}}\mathbf{sin}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{E}}_{\mathbf{3}}\mathbf{sin}\left(\frac{\boldsymbol{\upvarphi}}{2}\right)\hfill \\ {}\hfill \mathbf{cos}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)\hfill \end{array}\hfill \end{array}\hfill \end{array}\right]=\left[\begin{array}{c}\hfill \overrightarrow{\mathbf{E}}\mathbf{sin}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)\hfill \\ {}\hfill \mathbf{cos}\left(\frac{\boldsymbol{\upvarphi}}{\mathbf{2}}\right)\hfill \end{array}\right], $$
(51)

where

$$ {\mathbf{E}}_{\mathbf{1}}=\frac{{\mathbf{b}}_{\mathbf{1}}}{\mathbf{h}}, $$
(52)
$$ {\mathbf{E}}_{\mathbf{2}}=\frac{{\mathbf{b}}_{\mathbf{2}}}{\mathbf{h}}, $$
(53)
$$ {\mathbf{E}}_{\mathbf{3}}=\frac{{\mathbf{b}}_{\mathbf{3}}}{\mathbf{h}}. $$
(54)

\( \overrightarrow{\mathbf{E}} = \left[\begin{array}{c}\hfill {\mathbf{E}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{E}}_{\mathbf{2}}\hfill \\ {}\hfill {\mathbf{E}}_{\mathbf{3}}\hfill \end{array}\right] = \left[\begin{array}{c}\hfill {\mathbf{X}}_{\mathbf{E}}\hfill \\ {}\hfill {\mathbf{Y}}_{\mathbf{E}}\hfill \\ {}\hfill {\mathbf{Z}}_{\mathbf{E}}\hfill \end{array}\right] \) is the rotation vector proposed previously. In this paper, φ is assumed to be equal to π radians:

$$ \boldsymbol{\upvarphi} =\boldsymbol{\uppi} $$
(55)

According to the previous Equations (34), (40), and (49), it is easy to obtain:

$$ \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*}=\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill \mathbf{0}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill {\mathbf{r}}_{\mathbf{1}}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right] $$
(56)

and

$$ \overrightarrow{\mathbf{b}}\bullet \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*}=\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]\bullet \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*}, $$
(57)

where \( \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*} \) is a 4 by 1 matrix. Therefore

$$ {\mathbf{r}}^{\mathbf{T}}=\overrightarrow{\mathbf{b}}\bullet \mathbf{r}\bullet {\overrightarrow{\mathbf{b}}}^{*}=\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill \mathbf{0}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill {\mathbf{r}}_{\mathbf{1}}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]. $$
(58)

According to the multiplication properties introduced previously, Equation (59) can be obtained:

$$ \left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill \mathbf{0}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill {\mathbf{r}}_{\mathbf{1}}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill -{\mathbf{r}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]=\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right]. $$
(59)

Therefore, r T can be rewritten as:

$$ {\mathbf{r}}^{\mathbf{T}}=\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{cc}\hfill \begin{array}{ccc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{2}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{4}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{1}}\hfill & \hfill {\mathbf{b}}_{\mathbf{2}}\hfill & \hfill {\mathbf{b}}_{\mathbf{3}}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \begin{array}{c}\hfill -{\mathbf{b}}_{\mathbf{1}}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{2}}\hfill \end{array}\hfill \\ {}\hfill -{\mathbf{b}}_{\mathbf{3}}\hfill \\ {}\hfill {\mathbf{b}}_{\mathbf{4}}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right]. $$
(60)

The above is reorganized as:

$$ {\mathbf{r}}^{\mathbf{T}}={\left[\begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right]}_{\mathbf{T}}=\left[\begin{array}{ccc}\hfill {\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}\hfill & \hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill \begin{array}{cc}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{3}}+{\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill \kern1em \mathbf{0}\hfill \end{array}\hfill \\ {}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{2}}+{\mathbf{b}}_{\mathbf{3}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill {\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}\hfill & \hfill \begin{array}{cc}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{3}}-{\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill \kern1em \mathbf{0}\hfill \end{array}\hfill \\ {}\hfill \begin{array}{c}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{3}}-{\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{3}}+{\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{cc}\hfill \begin{array}{c}\hfill {\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\hfill & \hfill \begin{array}{c}\hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{1}\hfill \end{array}\hfill \end{array}\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{1}}\hfill \\ {}\hfill \begin{array}{c}\hfill {\mathbf{r}}_{\mathbf{2}}\hfill \\ {}\hfill {\mathbf{r}}_{\mathbf{3}}\hfill \end{array}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right]. $$
(61)

The resulting rotation matrix is

$$ \mathbf{R}=\left[\begin{array}{ccc}\hfill {\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}\hfill & \hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill 2\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{3}}+{\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill \\ {}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{2}}+{\mathbf{b}}_{\mathbf{3}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill {\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}\hfill & \hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{3}}-{\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill \\ {}\hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{3}}-{\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill \mathbf{2}\left({\mathbf{b}}_{\mathbf{2}}{\mathbf{b}}_{\mathbf{3}}+{\mathbf{b}}_{\mathbf{1}}{\mathbf{b}}_{\mathbf{4}}\right)\hfill & \hfill {\mathbf{b}}_{\mathbf{3}}^{\mathbf{2}}+{\mathbf{b}}_{\mathbf{4}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{1}}^{\mathbf{2}}-{\mathbf{b}}_{\mathbf{2}}^{\mathbf{2}}\hfill \end{array}\right] = \left[\begin{array}{ccc}\hfill {\mathbf{R}}_{\mathbf{1}\mathbf{1}}\hfill & \hfill {\mathbf{R}}_{\mathbf{1}\mathbf{2}}\hfill & \hfill {\mathbf{R}}_{\mathbf{1}\mathbf{3}}\hfill \\ {}\hfill {\mathbf{R}}_{\mathbf{2}\mathbf{1}}\hfill & \hfill {\mathbf{R}}_{\mathbf{2}\mathbf{2}}\hfill & \hfill {\mathbf{R}}_{\mathbf{2}\mathbf{3}}\hfill \\ {}\hfill {\mathbf{R}}_{\mathbf{3}\mathbf{1}}\hfill & \hfill {\mathbf{R}}_{\mathbf{3}\mathbf{2}}\hfill & \hfill {\mathbf{R}}_{\mathbf{3}\mathbf{3}}\hfill \end{array}\right]. $$
(62)

A3 A Two-Dimensional Geographical Case

In a two-dimensional geographical case, an element in the weight matrix in Eq (10) is transformed to that in Eq (63),

$$ {\mathbf{w}}_{\mathbf{ij}}=\frac{\mathbf{1}}{{\mathbf{d}}_{\mathbf{ij}}}. $$
(63)

where w ij is an element in the i th row and the j th column of a n × n weight matrix W with each row summing to 1 (row stochastic) and d ij denotes the spatiotemporal distance between observation i and observation j. It is worth noting that elements in the weight matrix W are no longer required to be arranged in chronological order and the weight matrix W is no longer required to a lower triangular matrix.

In a two-dimensional geographical case, the gradient of the scale field is defined as follows.

Definition 3 The gradient of the scalar field u, on a two-dimensional geographical scale, is a vector function and is defined as follows:

$$ \mathbf{grad}\ \mathbf{u}=\mathbf{\nabla}\mathbf{u}\equiv \frac{\boldsymbol{\Delta} \mathbf{u}}{\mathbf{d}} = \left(\begin{array}{c}\hfill \frac{\mathbf{\partial}\mathbf{u}}{\mathbf{\partial}\mathbf{x}}\hfill \\ {}\hfill \frac{\mathbf{\partial}\mathbf{u}}{\mathbf{\partial}\mathbf{y}}\hfill \end{array}\right), $$
(64)

where

grad u oru :

denotes the gradient of vector u ;

u :

denotes the estimated residuals;

X :

denotes the latitude;

Y :

denotes the longitude; and

D :

denotes the spatial distance between observations.

Consequently, in a two-dimensional geographical case, the gradient of a kernel observation in a geographical neighborhood is defined as follows.

Definition 4 The gradient of a kernel observation in a two-dimensional geographical neighborhood is defined as the arithmetic mean of the gradients of neighboring observations to the kernel observation.

$$ \mathbf{\nabla}{\mathbf{u}}_{\mathbf{j}} \equiv \frac{\mathbf{1}}{\mathbf{k}}{\displaystyle \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{k}}}\mathbf{\nabla}{\mathbf{u}}_{\mathbf{i}\mathbf{j}}=\left(\begin{array}{c}\hfill \frac{\mathbf{1}}{\mathbf{n}}{\displaystyle \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{k}}}\frac{{\mathbf{u}}_{\mathbf{j}}-{\mathbf{u}}_{\mathbf{i}}}{{\mathbf{x}}_{\mathbf{j}}-{\mathbf{x}}_{\mathbf{i}}}\hfill \\ {}\hfill \frac{\mathbf{1}}{\mathbf{n}}{\displaystyle \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{k}}}\frac{{\mathbf{u}}_{\mathbf{j}}-{\mathbf{u}}_{\mathbf{i}}}{{\mathbf{y}}_{\mathbf{j}}-{\mathbf{y}}_{\mathbf{i}}}\hfill \end{array}\right), $$
(65)

where

u j :

denotes the gradient of a kernel observation j;

u j :

denotes the estimated residual of the regression equation for a kernel observation j;

x j :

denotes the latitude of a kernel observation j;

y j :

denotes the longitude of a kernel observation j;

u i :

denotes the estimated residual of the regression equation for a non-kernel observation i;

x i :

denotes the latitude of a non-kernel observation i;

y i :

denotes the longitude of a non-kernel observation i ; and

k :

denotes the number of non-kernel observations in a geographical neighborhood.

The rotation of the two-dimensional spatial coordinate system can be conducted by the quaternion method by adding an equal temporal coordinate to the original two-dimensional geographical coordinates of all observations.

In addition, in a two-dimensional geographical case, the distance calculation in Eq (25) is transformed to that in Eq (66),

$$ {\mathbf{d}}_{\mathbf{ij}}^{\mathbf{T}}={\left({\left({\mathbf{x}}_{\mathbf{ij}}^{\mathbf{T}}-{\mathbf{x}}_{\mathbf{0j}}^{\mathbf{T}}\right)}^{\mathbf{2}}+{\boldsymbol{\upvarphi}}_{\mathbf{1}}*{\left({\mathbf{y}}_{\mathbf{ij}}^{\mathbf{T}}-{\mathbf{y}}_{\mathbf{0j}}^{\mathbf{T}}\right)}^{\mathbf{2}}\right)}^{\mathbf{1}/2}. $$
(66)

The spatiotemporal forecast method introduced in Section “Spatiotemporal Forecast” still applies to the two-dimensional geographical forecast. However, unlike spatiotemporal forecast, the temporal locations of the ex post observations are not required in a two-dimensional geographical case.

A4 The Comparison of the Goodness of Fit with Different Shrinking Magnitudes

Table 10 The comparison of the goodness of fit with different shrinking magnitudes spatial durbin model (1)
Table 11 The comparison of the goodness of fit with different shrinking magnitudes spatial durbin model (2)

A5 In-Sample Regression Results

Table 12 In-sample non-spatiotemporal model and spatial error model (optimal shrinking magnitudes) estimation results (1)
Table 13 In-sample spatial error model (optimal shrinking magnitudes) estimation results (2)
Table 14 In-sample spatial durbin model (optimal shrinking magnitudes) estimation results (1)
Table 15 In-sample spatial durbin model (optimal shrinking magnitudes) estimation results (2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. The Anisotropic Spatiotemporal Estimation of Housing Prices. J Real Estate Finan Econ 50, 484–516 (2015). https://doi.org/10.1007/s11146-014-9478-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11146-014-9478-8

Keywords

Navigation