Reading and Writing

, Volume 20, Issue 1–2, pp 77–102 | Cite as

Longitudinal twin study of early literacy development: Preschool through Grade 1

  • Brian ByrneEmail author
  • Stefan Samuelsson
  • Sally Wadsworth
  • Jacqueline Hulslander
  • Robin Corley
  • John C. DeFries
  • Peter Quain
  • Erik G. Willcutt
  • Richard K. Olson


Grade 1 literacy skills of twin children in Australia (New South Wales) and the United States (Colorado) were explored in a genetically sensitive design (N = 319 pairs). Analyses indicated strong genetic influence on word and nonword identification, reading comprehension, and spelling. Rapid naming showed more modest, though reliable, genetic influence. Phonological awareness was subject to high nonshared environment and no reliable genetic effects, and individual measures of memory and learning were also less affected by genes than nonshared environment. Multivariate analyses showed that the same genes affected word identification, reading comprehension, and spelling. Country comparisons indicated that the patterns of genetic influence on reading and spelling in Grade 1 were similar, though for the U.S. but not the Australian children new genes came on stream in the move from kindergarten to Grade 1. We suggest that this is because the more intensive kindergarten literacy curriculum in New South Wales compared with Colorado, consistent with the mean differences between the two countries, means that more of the genes are “online” sooner in Australia because of accelerated overall reading development.

Key words

Environment Genetics Phonological decoding Reading comprehension Spelling Word identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research was supported by the Australian Research Council (A79906201), the National Institute for Child Health and Human Development (HD27802 and HD38526), the Research Council of Norway (154715/330), the Swedish Research Council (345-2002-3701), and Stavanger University. We are grateful for support from the Australian Twin Registry and the Australian Multiple Birth Association. We also thank our testers: in Australia, Frances Attard, Nicole Church, Marreta Coleman, Cara Newman; in Norway, Bjarte Furnes; in Sweden, Inger Fridolfsson; in the USA, Kim Corley, Rachael Cole, Barb Elliott, Kari Gilmore, Angela Villella, and Ingrid Simece.


  1. Adams W., Sheslow D. (1990). Wide range assessment of memory and learning Wilmington, Delaware Jastak AssociatesGoogle Scholar
  2. Bates, T. C., Castles, A., Luciano, M., Wright, M., Coltheart, M., & Martin, N. G. Genetic and environmental bases of reading and spelling: A unified genetic dual route model. Reading and Writing: An Interdisciplinary Journal (in press)Google Scholar
  3. Bishop D. V. M., (1989). Test for reception of grammar (TROG) 2 Abingdon, UK Medical Research CouncilGoogle Scholar
  4. Byrne B., Delaland C., Fielding-Barnsley R., Quain P., Samuelsson S., Hoien T., Corley R., DeFries J. C., Wadsworth S., Willcutt E. G., Olson R. K. (2002). Longitudinal twin study of early reading development in three countries: Preliminary results Annals of Dyslexia 52:49–73Google Scholar
  5. Byrne B., Wadsworth S., Corley R., Samuelsson S., Quain P., DeFries J. C., Willcutt E. G., Olson R. K. (2005). Longitudinal twin study of early literacy development: Preschool and kindergarten phases Scientific Studies of Reading 9:219–235CrossRefGoogle Scholar
  6. Byrne B., Olson R. K., Samuelsson S., Wadsworth S., Corley R., DeFries J. C., Willcutt E. G. (2006). Genetic and environmental influences on early literacy Journal of Research in Reading 29:33–49CrossRefGoogle Scholar
  7. Cope N., Harold D., Hill G., Moskvina V., Stevenson J., Holmans P., Owen M. J., Oȁ9Donovan M. C., Williams J. (2005) Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia American Journal of Human Genetics 76:581–591CrossRefPubMedGoogle Scholar
  8. Coventry W. L., Keller M. C. (2005). Exploring the extent of parameter bias in the Classical Twin Design: A comparison of parameter estimates from the Extended Twin-Family and Classical Twin Designs Twin Research and Human Genetics 8:214–223CrossRefPubMedGoogle Scholar
  9. Curtis M. E. (1980). Development of components of reading skill Journal of Educational Psychology 72:656–669CrossRefGoogle Scholar
  10. Deffenbacher K. E., Kenyon J. B., Hoover D. M., Olson R. K., Pennington B. F., DeFries J. C., Smith S. D. (2004). Refinement of the 6P21.3 QTL influencing dyslexia: Linkage and association analyses Human Genetics 115:128–138CrossRefPubMedGoogle Scholar
  11. Elbro C., Petersen D. K. (2004). Long-term effects of phoneme awareness and letter sound training: An intervention study with children at risk for dyslexia Journal of Educational Psychology 96:660–670CrossRefGoogle Scholar
  12. Fisher S. E., DeFries J. C. (2002). Developmental dyslexia: genetic dissection of a complex cognitive trait Nature Reviews Neuroscience 3:767–780CrossRefPubMedGoogle Scholar
  13. Foulin J. N. (2005). Why is letter-name knowledge such a good predictor of learning to read? Reading & Writing: An Interdisciplinary Journal 18:129–155CrossRefGoogle Scholar
  14. Gayán J., Olson R. K. (2001). Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities Developmental Neuropsychology 20(2):487–511CrossRefGoogle Scholar
  15. Gayán J., Olson R. K. (2003). Genetic and environmental influences on individual differences in printed word recognition Journal of Experimental Child Psychology 84:97–123CrossRefPubMedGoogle Scholar
  16. Hannula-Jouppi K., Kaminen-Ahola N., Taipale M., Eklund R., Nopola-Hemmi J., Kääriäinen H., & Kere J. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. Public Library of Science: Genetics, 1(4) e50, 0467–0474Google Scholar
  17. Harlaar N., Spinath F. M., Dale P. S., Plomin R. (2005). Genetic influences on early word recognition abilities and disabilities: A study of 7-year-old twins Journal of Child Psychology and Psychiatry 46:373–384CrossRefPubMedGoogle Scholar
  18. Hindson B. A., Byrne B., Fielding-Barnsley R., Newman C., Hine D. W., Shankweiler D. (2005). Assessment and early instruction of preschool children at risk for reading disability Journal of Educational Psychology 97:687–704CrossRefGoogle Scholar
  19. Hoover W. A., Gough P. B. (1990). The simple view of reading Reading & Writing: An Interdisciplinary Journal 2:127–160CrossRefGoogle Scholar
  20. Jastak S., Wilkinson G. S. (1984). The wide range achievement test-revised:administration manual Wilmington, DE Jastak Associates, IncGoogle Scholar
  21. Juel C. (1988). Learning to read and write: A longitudinal study of 54 children from first through fourth grades Journal of Educational Psychology 80:437–447CrossRefGoogle Scholar
  22. Keenan J. M., Betjemann R., Wadsworth S. J., DeFries J. C., Olson R. K. (2006). Genetic and environmental influences on reading and listening comprehension Journal of Research in Reading 29:75–91CrossRefGoogle Scholar
  23. Keller M. C., Coventry W. L. (2005). Quantifying and addressing parameter indeterminacy in the Classical Twin Design Twin Research and Human Genetics 8:201–213CrossRefPubMedGoogle Scholar
  24. McGue M., Bouchard T. J. Jr., Iacono W. G., Lykken D. T. (1993). Behavioral genetics of cognitive ability: A lifespan perspective In: R. Plomin, G. E. McClearn (Eds) Nature, nurture, and psychology Washington, DC American Psychological Association (pp. 59–76)CrossRefGoogle Scholar
  25. Mehta P. D., Foorman B. R., Branum-Martin L., Taylor W. P. (2005). Literacy as a unidimensional multivlevel construct: Validation,sources of influence, and implications in a longitudinal study in Grades 1 to 4 Scientific Studies of Reading 9:85–116CrossRefGoogle Scholar
  26. Meng H., Smith S. D., Hager K., Held M., Liu J., Olson R. K., Pennington B. F., DeFries J. C., Gelernter J., Oȁ9Reilly-Pol T., Somlo S., Skudlarski P., Shaywitz S. F., Shaywitz B. A., Marchione K., Wang Y., Paramasivam M., LoTurco J. J., Page G. P., Gruen J. R. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain Proceedings of the National Academy of Sciences 102:17053–17058CrossRefGoogle Scholar
  27. Morrison F. J., Griffith E. M., Alberts D. M. (1997). Nature–nurture in the classroom: Entrance age, school readiness, and learning in children Developmental Psychology 33:254–262CrossRefPubMedGoogle Scholar
  28. Neale M. C., Boker S. M., Xie G., & Maes H. H. (2002). Mx: Statistical Modeling. VCU Box 900126, Richmond, VA 23298: Department of Psychiatry. 6th EditionGoogle Scholar
  29. Olson R. K., Byrne B. (2005). Genetic and environmental influences on reading and language ability and disability In: H. Catts, A. Kamhi (Eds) The connections between language and reading disabilities Mahwah, NJ Laurence Erlbaum Associates (pp. 173–200)Google Scholar
  30. Olson R. K., Forsberg H., Wise B. (1994). Genes, environment, and the development of orthographic skills In: V.W. Berninger (Eds) The varieties of orthographic knowledge I: Theoretical and developmental issues Dordrecht, The Netherlands Kluwer Academic Publishers, (pp. 27–71)Google Scholar
  31. Olson R. K., Wise B., Conners F., Rack J., Fulker D. (1989). Specific deficits in component reading and language skills: Genetic and environmental influences Journal of Learning Disabilities 22:339-348PubMedCrossRefGoogle Scholar
  32. Pennington B. F., Olson R. K. (2005). Genetics of dyslexia In: M. Snowling, C. Hulme (Eds) The science of reading: A handbook Oxford Blackwell Publishing (pp. 453–472)Google Scholar
  33. Perfetti C. A., Landi N., Oakhill J. (2005). The acquisition of reading comprehension skill In: M. Snowling, C. Hulme (Eds) The science of reading: A handbook Oxford Blackwell (pp. 227–247)Google Scholar
  34. Petrill S. A., Deater-Deckard K., Schatschneider C., Davis C. (2005). Measured environmental influences on early reading: Evidence from an adoption study Scientific Studies of Reading 9:237–260CrossRefGoogle Scholar
  35. Petrill, S. A., Deater-Deckard, K., Thompson, L. A., & DeThorne, L. S. (2006). Reading skills in early readers: Genetic and shared environmental influences. Journal of Learning Disabilities, 39, 48–55Google Scholar
  36. Petrill, S. A., Deater-Deckard, K., Thompson, L. A., DeThorne, L. S., & Schatschneider, C. (2006). Genetic and environmental effects of serial naming and phonological awareness on early reading outcomes, Journal of Educational Psychology, 98, 112–121Google Scholar
  37. Petrill, S. A., Deater-Deckard, K., Thompson, L. A., Schatschneider, C., & DeThorne, L. S. (in press). Reading and Writing: An Interdisciplinary Journal Google Scholar
  38. Plomin R., DeFries J. C., McClearn G. E., McGuffin P. (2001). Behavioral genetics 4 New York WorthGoogle Scholar
  39. Samuelsson S., Byrne B., Quain P., Wadsworth S., Corley R., DeFries J. C., Willcutt E. G., Olson R. K. (2005). Environmental and genetic influences on prereading skills in Australia, Scandinavia, and the United States Journal of Educational Psychology 97:705–722CrossRefGoogle Scholar
  40. Samuelsson, S., Olson, R. K., Wadsworth, S., Corley, R., DeFries, J. C., Willcutt, E., Hulslander, J., & Byrne, B. (in press). Genetic and environmental influences on pre-reading skills and early reading and spelling development: A comparison between the United States, Australia, and Scandinavia. Reading and Writing: An Interdisciplinary Journal Google Scholar
  41. Schumacher J., Anthoni H., Dahdouh F., König I. R., Hillmer A. M., Kluck N., Manthey M., Plume E., Warnke A., Remschmidt H., Hülsmann J., Cichon S., Lindgren C. M., Propping P., Zucchelli M., Ziegler A., Peyrard-Janvid M., Schulte-Körne G., Nöthen M. M., Kere J. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia American Journal of Human Genetics 78:52–62CrossRefPubMedGoogle Scholar
  42. Taipale M., Kaminen N., Nopola-Hemmi J., Haltia T., Myllyluoma B., Lyytinen H., Muller K., Kaaranen M., Lindsberg P. J., Hannula-Jouppi K., Kere J. (2003). A candidate gene for developmental dyslexia encodes a nuclear tertatricopeptide repeat domain protein dynamically regulated in the brain Proceedings of the National Academy of Sciences 20:11553–11558CrossRefGoogle Scholar
  43. Thomas C. J. (1905). Congenital word-blindness and its treatment Ophthalmoscope 3:380–385Google Scholar
  44. Torgesen J., Wagner R., Rashotte C. A. (1999). A test of word reading efficiency (TOWRE) Austin, Texas PRO-EDGoogle Scholar
  45. Wadsworth S. J., Corley R. P., Hewitt J. K., Plomin R., DeFries J. C. (2002). Parent-offspring resemblance for reading performance at 7:12, and 16 years of age in the Colorado Adoption Project Journal of Child Psychology and Psychiatry and Allied Disciplines 43(6):769–774Google Scholar
  46. Wagner R. K., Torgesen J. K., Rashotte C. A. (1999). The comprehensive test of phonological processes (CTOPP) Austin, Texas PRO-EDGoogle Scholar
  47. Wechsler D. (1989). Manual for the wechsler preschool and primary scale of intelligence-revised New York Psychological CorporationGoogle Scholar
  48. Woodcock R. W. (1989). Woodcock reading mastery tests Circle Pines, MN American Guidance ServiceGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Brian Byrne
    • 1
    • 5
    Email author
  • Stefan Samuelsson
    • 2
    • 3
  • Sally Wadsworth
    • 4
  • Jacqueline Hulslander
    • 5
  • Robin Corley
    • 4
  • John C. DeFries
    • 4
  • Peter Quain
    • 6
  • Erik G. Willcutt
    • 5
  • Richard K. Olson
    • 5
  1. 1.School of Psychology and Language and Cognition Research CentreUniversity of New EnglandArmidaleAustralia
  2. 2.Department of EducationStavanger UniversityStavangerNorway
  3. 3.Department of Behavioral SciencesLinköping UniversityLinköpingSweden
  4. 4.Institute for Behavioral GeneticsUniversity of ColoradoBoulderUSA
  5. 5.Department of PsychologyUniversity of ColoradoBoulderUSA
  6. 6.School of PsychologyUniversity of New EnglandArmidaleAustralia

Personalised recommendations