Skip to main content
Log in

Back to Africa: Tracing Dyslexia Genes in East Africa

  • Published:
Reading and Writing Aims and scope Submit manuscript

Abstract

A sample of Swahili-speaking probands with reading difficulties was identified from a large representative sample of 1,500 school children in the rural areas of Tanzania. Families of these probands (n = 88) were invited to participate in the study. The proband and his/her siblings received a battery of reading-related tasks and performance on these tasks was recorded and treated as phenotypic data. Molecular-genetic analyses were carried out with 47 highly polymorphic markers spanning three previously identified regions of interest harboring susceptibility loci for reading difficulties: 2p, 6p, and 15q (DYX1–DYX3). The analyses revealed the involvement of these regions in the development of reading difficulties in Swahili. The linkage signals are especially pronounced for time (compared with error) indicators of reading difficulties. These findings are easily interpretable because in transparent languages such as Swahili deficits in reading are more related to the rate/speed of reading and reading-related processes than to the number of errors made. In short, the study incrementally advances the field by adding an understudied language and an understudied population to the variety of languages and populations in the field of molecular-genetic studies of reading difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcon M., Yonan A. L., Gilliam T. C., Cantor R. M., Geschwind D. H., (2005). Quantitative genome scan and Ordered-Subsets Analysis of autism endophenotypes support language QTLs Molecular Psychiatry 10:747–757

    Article  Google Scholar 

  • Alcock K. J., Ngorosho D., (2003). Learning to spell a regularly spelled language is not a trivial task – Patterns of errors in Kiswahili Reading & Writing 16:635–666

    Article  Google Scholar 

  • Alcock K. J., Ngorosho D., (2004). Interaction between phonological and grammatical processing in single word production in Kiswahili Language & Speech 47:1–30

    Article  Google Scholar 

  • Alcock K. J., Nokes K., Ngowi F., Musabi C., Mbise A., Mandali R., et al. (2000). The development of reading tests for use in a regularly spelled language Applied Psycholinguistics 21:525–555

    Article  Google Scholar 

  • Amberber, M., Collins, P. (Eds.). (2002). Language universals and variation. Praeger, Westport, CT

  • Barr C., (2005). Linkage studies of reading disabilities and ADHD in the chromosome 6p and 15q regions. SSSR Annual Meeting: Pre-conference, Toronto, CA

    Google Scholar 

  • Bellini G., Bravaccio C., Calamoneri F., Cocuzza M. D., Fiorillo P., Gagliano A., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variatns in a group of children and adolescents from Southern Italy Journal of Molecular Neuroscience 27:311–314

    Article  Google Scholar 

  • Brady S. A., (1997). Ability to encode phonological representations: An underlying difficulty of poor readers. In: Blachman B. A., (Eds) Foundations of reading acquisition and dyslexia: Implications for early intervention. Lawrence Erlbaum Associates, Publishers, Mahwah, NJ, pp. 21–47

    Google Scholar 

  • Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., DeFries J. C., (1994). Quantitative trait locus for reading disability on chromosome 6 Science 226:276–279

    Article  Google Scholar 

  • Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., DeFries J. C., (1995). Quantitative trait locus for reading disability: Correction Science 268:1553

    Article  Google Scholar 

  • Chapman N. H., Igo R. P., Thomson J. B., Matsushita M., Brkanac Z., Holzman T., et al. (2004). Linkage analyses of four regions previously implicated in dyslexia: Confirmation of a locus on chromosome 15q American Journal of Medical Genetics (Neuropsychiatric Genetics) 131B:67–75

    Article  Google Scholar 

  • Chen G., Adeyemo A. A., Johnson T., Zhou J., Amoah A., Owusu S., et al. (2005). A genome-wide scan for quantitative trait loci linked to obesity phenotypes among West Africans International Journal of Obesity 29:255–259

    Article  Google Scholar 

  • Chiu Y. F., Chuang L. M., Hsiao C. F., Hung Y. J., Lin M. W., Chen Y. T., et al. (2005). An autosomal genome-wide scan for loci linked to pre-diabetic phenotypes in nondiabetic Chinese subjects from the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance Family Study Diabetes 54:1200–1206

    Google Scholar 

  • Cope N., Harold D., Hill G., Moskvina V., Holmans P., Owen M. J., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia American Journal of Human Genetics 76:581–591

    Article  Google Scholar 

  • Denckla, M. A., & Rudel, R. G. (1976). Naming of object drawing by dyslexia and other learning disabled children. Brain and Language, 3, 1–16

  • Deffenbacher K. E., Kenyon J. B., Hoover D. M., Olson R. K., Pennington B. F., DeFries J. C., et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses Human Genetics 115:128–138

    Article  Google Scholar 

  • Fabian J., (1986). Language and colonial power. University of California Press, Berkley

    Google Scholar 

  • Fagerheim T., Raeymaekers P., Tønnessen F. E., Pedersen M., Tranebjærg L., Lubs H. A., (1999). A new gene (DYX3) for dyslexia is located on chromosome 2 Journal of Medical Genetics 36:664–669

    Google Scholar 

  • Fisher S. E., Francks C., Marlow A. J., MacPhie I. L., Newburry D. F., Cardon L. R., et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia Nature Genetics 30:86–91

    Article  Google Scholar 

  • Francks C., Paracchini S., Smith S. D., Richardson A. J., Scerri T. S., Cardon L. R., et al. (2004). A 77-kilobase region on chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States American Journal of Human Genetics 75:1046–1058

    Article  Google Scholar 

  • Gathercole S. E., Willis G. S., Baddeley A. D., Emslie H., (1994). The childrenȁ9s test of non-word repetition: A test of phonological memory Memory 2:103–127

    Google Scholar 

  • Gayán J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., et al. (1999). Quantitative-trait locus for specific language and reading deficits on chromosome 6p American Journal of Human Genetics 64:157–164

    Article  Google Scholar 

  • Goulandris, N. (Ed.). (2003). Dyslexia in different languages: A cross-linguistic comparison. Whurr Publishers, London

  • Grigorenko E. L., (2005a). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia Scientific Studies of Reading 9:285–316

    Article  Google Scholar 

  • Grigorenko E. L., (2005b). If John were Ivan: Would he fail in reading? In: Joshi R. M., Aaron P. G., (Eds) Handbook of orthography and literacy. Lawrence Erlbaum Associates, Mahwah, NJ, pp. 303–320

    Google Scholar 

  • Grigorenko E. L., Ngorosho D., Jukes M., Bundy D., (2006). Reading in able and disabled readers from around the world: Same or different? An illustration from a study of reading-related processes in a Swahili sample of siblings Journal of Reading Research 29:104–123

    Article  Google Scholar 

  • Grigorenko E. L., Ngorosho D., Romano C., Turechek L., Yrigollen C., (2004). Two failed attempts to replicate the association between DD and DYX1C1/EKN1 Behavior Genetics 34:642–643

    Google Scholar 

  • Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster A., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15 American Journal of Human Genetics 60:27–39

    Google Scholar 

  • Hannula-Jouppi K., Kaminen-Ahola N., Taipale M., Eklund R., Nopola-Hemmi J., Kääriäinen H., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate dene for developmental dyslexia PLoS 1:e50

    Article  Google Scholar 

  • Heath S. C., (1997). Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models American Journal of Human Genetics 61:748–760

    Google Scholar 

  • Heine, B., Nurse, D. (Eds.). (2000). African languages: An introduction. Cambridge University Press, New York

  • Hombert J.-M., Hyman L. M., (1999). Bantu historical linguistics. CSLI Publications, Washington, DC

    Google Scholar 

  • Kaminen N., Hannula-Jouppi K., Kestilä M., Lahermo P., Muller K., Kaaranen M., et al. (2003). A genome scane for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32 Journal of Medical Genetics 40:340–345

    Article  Google Scholar 

  • Kammerer C. M., Gouin N., Samollow P. B., VandeBerg J. F., Hixson J. E., Cole S. A., et al. (2004). Two quantitative trait loci affect ACE activities in Mexican–Americans Hypertension 43:466–470

    Article  Google Scholar 

  • Kass R. E., Raftery A. E., (1995). Bayes factors Journal of American Statistical Association 90:773–795

    Article  Google Scholar 

  • Landerl K., (2001). Word recognition deficits in German: More evidence from a representative sample Dyslexia: An International Journal of Research & Practice 7:183–196

    Article  Google Scholar 

  • Landerl K., Wimmer H., (2002). Deficits in phoneme segmentation are not the core problem of dyslexia: Evidence from German and English children Applied Psycholinguistics 21:243–262

    Article  Google Scholar 

  • Leinonen S., Muller K., Leppanen P. H. T., Aro M., Ahonen T., Lyytinen H., (2001). Heterogeneity in adult dyslexic readers: Relating processing skills to the speed and accuracy of oral text reading Reading and Writing 14:265–296

    Article  Google Scholar 

  • Marino C., Giorda R., Vanzin L., Nobile M., Lorusso M. L., Baschirotto C., et al. (2004). A locus on 15q15–15qter influences dyslexia: Further support from a transmission/disequilibrium study in an Italian speaking population Journal of Medical Genetics 41:42–48

    Article  Google Scholar 

  • Marlow A. J., Fisher S. E., Francks C., MacPhie I. L., Cherny S. S., Richardson A. J., Talcott J. B., Stein J. F., Monaco A. P., Cardon L. R., (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait American Journal of Human Genetics 72:561–570

    Article  Google Scholar 

  • McPeek M. S., Sun L., (2000). Statistical tests for detaction of misspecified relationships by use of genome-screen data American Journal of Human Genetics 66:1076–1094

    Article  Google Scholar 

  • Meng H., Hager K., Held M., Page G. P., Olson R. K., Pennington B. F., et al. (2005). TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort Human Genetics 118:87–90

    Article  Google Scholar 

  • Meng H., Smith S. D., Hager K., Held M., Liu J., Olson R. K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain Proceedings of the National Academy of Sciences of the United States of America 102:17053–17058

    Article  Google Scholar 

  • Nash M. W., Huezo-Diaz P., Williamson R. J., Sterne A., Purcell S., Hoda F., et al. (2004). Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships Human Molecular Genetics 13:2173–2182

    Article  Google Scholar 

  • Neuman R. J., Yuan B., Gerhard D. S., Liu K.-Y., Yue P., Duan S., et al. (2002). Replication of linkage of familial hypobetalipoproteinemia to chromosome 3p in six kindreds Journal of Lipid Research 43:407–415

    Google Scholar 

  • Paracchini S., (2005). Functional analysis of the risk haplotype for dyslexia on chromosome 6p22. SSSR Annual Meeting: Pre-conference, Toronto, CA

    Google Scholar 

  • Partnership for Child Development (2002). Heavy schistosomiasis associated with poor short-term memory and slower reaction times in Tanzanian school children. Tropical Medicine & International Health, 7, 104–117

    Google Scholar 

  • Petryshen T. L., Kaplan B. J., Hughes M. L., Tzenova J., Field L. L., (2002). Supportive evidence for the DYX3 dyslexia susceptibility gene in Canadian families Journal of Medical Genetics 39:125–126

    Article  Google Scholar 

  • Raskind W. H., Igo R. P. J., Chapman N. H., Berninger V. W., Thomson J. B., Matsushita M., et al. (2005). A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency Molecular Psychiatry 10:699–711

    Article  Google Scholar 

  • Rosner J., (1999). Test of auditory analysis skills. Academic Therapy Publications, Novato, CA

    Google Scholar 

  • Scerri T. S., Fisher S. E., Francks C., MacPhie I. L., Paracchini S., Richardson A. J., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK Journal of Medical Genetics 41:853–857

    Article  Google Scholar 

  • Schulte-Körne G., Grimm T., Nöthen M. M., Müller-Myhsok B., Cichon S., Vogt I. R., et al. (1998). Evidence for linkage of spelling disability to chromosome 15 American Journal of Human Genetics 63:279–282

    Article  Google Scholar 

  • Schumacher J., Anthoni H., Dahdouh F., König I. R., Hillmer H. M., Kluck N., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia American Journal of Human Genetics 78:52–62

    Article  Google Scholar 

  • Seymour P. H. K., Aro M., Erskine J. M., (2003) Foundation literacy acquisition in European orthographies British Journal of Psychology 94:143–174

    Article  Google Scholar 

  • Smith S. D., Kimberling W. J., Pennington B. F., Lubs H. A., (1983). Specific reading disability: Identification of an inherited form through linkage analyses Science 219:1345–1347

    Article  Google Scholar 

  • Stanovich K. E., (1981). Relationships between word decoding speed, general name-retrieval ability, and reading progress in first-grade children Journal of Edcuational Psychology 73:809–815

    Article  Google Scholar 

  • Taipale M., Kaminen N., Nopola-Hemmi J., Haltia T., Myllyluoma B., Lyytinen H., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain Proceedings of the National Academy of Sciences of the United States of America 100:11553–11558

    Article  Google Scholar 

  • Wimmer H., (1996). The nonword reading deficit in developmental dyslexia: Evidence from children learning to read German Journal of Experimental Child Psychology 61:80–90

    Article  Google Scholar 

  • Zoccolotti P., de Luca M., di Pace E., Judica A., Orlandi M., Spinelli D., (1999). Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence Applied Psycholinguistics 20:191–216

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported primarily by the Partnership for Child Development, with headquarters at Imperial College, London, United Kingdom. The PCD in turn received major support from the James S. McDonnell Foundation. This work also received partial support from a grant under the Javits Act Program (Grant No. R206R00001), administered by the Institute for Educational Sciences, U.S. Department of Education, and from a grant P01 HD 21887, administered by the U.S. National Institutes of Health.

We express our gratitude to our many Tanzanian colleagues who assisted us in data collection and processing. Moreover, the project would never have been completed without the support of the Tanzanian Ministries of Education and Health and local authorities in Bagamoyo. We also express our gratitude to Dr. Linda Jarvin for her assistance with transporting the samples and to Ms. Robyn Rissman for her editorial aid. Finally, our special thanks are due to the children and their families who participated in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Grigorenko.

Notes

Notes

  1. 1

    Here we use the terms developmental dyslexia and specific reading disability interchangeably, referring to a developmental condition of difficulty mastering mental processing and representing of written print.

  2. 2

    None of the selection measures were used in the linkage analyses so the linkage results were not to be biased.

  3. 3

    This is probably an overly conservative solution. Bayes factors should not particularly change much when the prior is spread over the candidate regions, since the prior and posterior probabilities in each bin would increase proportionately. We have considered this possibility in a number of tests and obtained results similar to those presented here. We did not, however, undertake a comprehensive exploration of this issue.

  4. 4

    The analyses are presented for τ = 2, although multiple τ(s) were considered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, E.L., Naples, A., Chang, J. et al. Back to Africa: Tracing Dyslexia Genes in East Africa. Read Writ 20, 27–49 (2007). https://doi.org/10.1007/s11145-006-9017-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11145-006-9017-y

Keywords

Navigation