Skip to main content
Log in

Combination of Cu and Zn on ZIF structure for efficient degradation of basic fuchsin in aqueous solution

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work aims to synthesize bimetallic CuZn-ZIFs using a solvothermal method to degrade Basic Fuchsin in an aqueous solution in the presence of hydrogen peroxide (H2O2) under ambient conditions. Zn and Cu were loaded successfully on the ZIF structure due to the linkage of Cu–N and Zn-N found by FT-IR. The combination of Cu/Zn on the ZIF structure enhanced the specific surface area up to 1568.4 m2 g−1 and 0.48 cm3 g−1 of pore volume, which can facilitate the performance of BF degradation. Under the optimum conditions, including a reaction time of 20 min, an initial BF concentration of 30 mg L−1, and catalyst dosage of 0.1 g L−1, H2O2 level of 0.03 mol L−1, the efficiency degradation of BF achieved significantly high with above 96% through Fenton-like mechanism. CuZn-ZIFs also performed higher catalytic activity compared to some homogeneous and other heterogeneous catalysts. Notably, it was observed that the catalytic activity of CuZn-ZIFs mostly remained after five cycles. The study offers valuable insights into the utilization of novel materials for potential applications in pollutant treatment and environmental remediation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El Qada EN, Allen SJ, Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons. Chem Eng J 135:174–184. https://doi.org/10.1016/j.cej.2007.02.023

    Article  CAS  Google Scholar 

  2. Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346. https://doi.org/10.1016/j.cej.2009.04.051

    Article  CAS  Google Scholar 

  3. Ong S-T, Tan S-Y, Khoo E-C, Lee S-L, Ha S-T (2012) Equilibrium studies for basic blue 3 adsorption onto durian peel (Durio zibethinus Murray). Desalin Water Treat 45:161–169. https://doi.org/10.1080/19443994.2012.692037

    Article  CAS  Google Scholar 

  4. Zargar B, Parham H, Hatamie A (2009) Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin. Talanta 77:1328–1331. https://doi.org/10.1016/j.talanta.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  5. Hazra D, Krithika M, Shenoy VP, Chawla K (2022) Evaluation of phenol ammonium sulfate basic fuchsin and auramine O staining by pot technique for the detection of acid-fast bacilli among patients suspected of pulmonary tuberculosis. Biomedicine 42:757–760. https://doi.org/10.51248/.v42i4.1472

    Article  Google Scholar 

  6. Ahmed H, Salihi K, Kaufhold S, Aziz B, Radha MH, Karim L, Nooralddin H (2023) Efficient removal of basic fuchsin from synthetic medical wastewater and competitive adsorption in the mixture. Adsorp Sci Technol. https://doi.org/10.1155/2023/4672622

    Article  Google Scholar 

  7. Fung DY, Miller RD (1973) Effect of dyes on bacterial growth. Appl Microbiol 25:793–799. https://doi.org/10.1128/am.25.5.793-799.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu L, Xue W, Cui L, Xing W, Cao X, Li H (2014) Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal. Int J Biol Macromol 64:233–239. https://doi.org/10.1016/j.ijbiomac.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Bianchi CL, Djellabi R, Della Pina C, Falletta E (2022) Doped-polyaniline based sorbents for the simultaneous removal of heavy metals and dyes from water: unravelling the role of synthesis method and doping agent. Chemosphere 286:131941. https://doi.org/10.1016/j.chemosphere.2021.131941

    Article  CAS  PubMed  Google Scholar 

  10. Nor NM, Hadibarata T, Zubir MMFA, Lazim ZM, Adnan LA, Fulazzaky MA (2015) Mechanism of triphenylmethane cresol red degradation by Trichoderma harzianum M06. Bioproc Biosyst Eng 38:2167–2175. https://doi.org/10.1007/s00449-015-1456-x

    Article  CAS  Google Scholar 

  11. Ben Aissa M, Khezami L, Taha K, Elamin N, Mustafa B, Al-Ayed A, Modwi A (2021) Yttrium oxide-doped ZnO for effective adsorption of basic fuchsin dye: equilibrium, kinetics, and mechanism studies. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03816-y

    Article  Google Scholar 

  12. Su M, Li H, He X, Xu Z (2022) Significant enhancement of pesticide and organic dyes degradation by ion-exchange within a metal–organic framework. Polyhedron 215:115651. https://doi.org/10.1016/j.poly.2022.115651

    Article  CAS  Google Scholar 

  13. González-Rodríguez J, Gamallo M, Conde JJ, Vargas-Osorio Z, Vázquez-Vázquez C, Piñeiro Y, Rivas J, Feijoo G, Moreira MT (2021) Exploiting the potential of supported magnetic nanomaterials as Fenton-like catalysts for environmental applications. Nanomaterials 11:2902. https://doi.org/10.3390/nano11112902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liang D, Li N, An J, Ma J, Wu Y, Liu H (2021) Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation. Sci Total Environ 753:141809. https://doi.org/10.1016/j.scitotenv.2020.141809

    Article  CAS  PubMed  Google Scholar 

  15. Zuo S, Jin X, Wang X, Lu Y, Zhu Q, Wang J, Liu W, Du Y, Wang J (2021) Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Appl Catal B: Environ 282:119551. https://doi.org/10.1016/j.apcatb.2020.119551

    Article  CAS  Google Scholar 

  16. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787. https://doi.org/10.1016/j.jece.2015.12.016

    Article  CAS  Google Scholar 

  17. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H-C, Long JR and Yaghi OM (2012) Introduction to metal–organic frameworks. ACS Publications, pp. 673–674

  19. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943. https://doi.org/10.1126/science.1152516

    Article  CAS  PubMed  Google Scholar 

  20. Huang XC, Lin YY, Zhang JP, Chen XM (2006) Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl 45:1557–1559. https://doi.org/10.1002/anie.200503778

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Zhang N, Yue Y, Xiao J, Huang X, Ishag A (2022) Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review. Environ Sci Nano 9:4069–4092. https://doi.org/10.1039/D2EN00601D

    Article  CAS  Google Scholar 

  22. Duan C, Yu Y, Hu H (2022) Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ 7:3–15. https://doi.org/10.1016/j.gee.2020.12.023

    Article  CAS  Google Scholar 

  23. Kouser S, Hezam A, Khadri MN, Khanum SA (2022) A review on zeolite imidazole frameworks: synthesis, properties, and applications. J Porous Mater 29:663–681. https://doi.org/10.1007/s10934-021-01184-z

    Article  CAS  Google Scholar 

  24. Nagarjun N, Dhakshinamoorthy A (2019) A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New J Chem 43:18702–18712. https://doi.org/10.1039/c9nj03698a

    Article  CAS  Google Scholar 

  25. Yang X, Zhao J, Cavaco-Paulo A, Su J, Wang H (2023) Encapsulated laccase in bimetallic Cu/Zn ZIFs as stable and reusable biocatalyst for decolorization of dye wastewater. Int J Biol Macromol 233:123410. https://doi.org/10.1016/j.ijbiomac.2023.123410

    Article  CAS  PubMed  Google Scholar 

  26. Anbari AP, Delcheh SR, Heynderickx PM, Chaemcheun S, Zhuiykov S, Verpoort F (2023) Green approach for synthesizing copper-containing ZIFs as efficient catalysts for click chemistry. Catalysts 13:1003. https://doi.org/10.3390/catal13061003

    Article  CAS  Google Scholar 

  27. Luong TH, Nguyen TH, Nguyen BV, Nguyen NK, Nguyen TQ, Dang GH (2022) Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs. Green Process Synth 11:71–83. https://doi.org/10.1515/gps-2022-0006

    Article  CAS  Google Scholar 

  28. Nguyen TQ, Tran HB, Nguyen NK, Nguyen NM, Dang GH (2023) Removal efficiency of dibenzofuran using CuZn-zeolitic imidazole frameworks as a catalyst and adsorbent. Green Process Synth 12:20228112. https://doi.org/10.1515/gps-2022-8112

    Article  CAS  Google Scholar 

  29. Shi J, Zhang L, Sun N, Hu D, Shen Q, Mao F, Gao Q, Wei W (2019) Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions. ACS Appl Mater Interfaces 11:28858–28867. https://doi.org/10.1021/acsami.9b07991

    Article  CAS  PubMed  Google Scholar 

  30. Goyal S, Shaharun MS, Kait CF and Abdullah B (2018) Effect of monometallic copper on zeolitic imidazolate framework-8 synthesized by hydrothermal method. J Phys: Conf Ser, IOP Publishing, pp. 012062

  31. Hodges BC, Cates EL, Kim J-H (2018) Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat Nanotechnol 13:642–650. https://doi.org/10.1038/s41565-018-0216-x

    Article  CAS  PubMed  Google Scholar 

  32. Wei L, Zhang Y, Chen S, Zhu L, Liu X, Kong L, Wang L (2019) Synthesis of nitrogen-doped carbon nanotubes-FePO4 composite from phosphate residue and its application as effective Fenton-like catalyst for dye degradation. J Environ Sci 76:188–198. https://doi.org/10.1016/j.jes.2018.04.024

    Article  CAS  Google Scholar 

  33. Bhattacharjee S, Jang M-S, Kwon H-J, Ahn W-S (2014) Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal Surv Asia 18:101–127. https://doi.org/10.1007/s10563-014-9169-8

    Article  CAS  Google Scholar 

  34. Carvalho SS, Carvalho NM (2017) Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. J Environ Manage 187:82–88. https://doi.org/10.1016/j.jenvman.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  35. Wei H, Hu D, Su J, Li K (2015) Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles. Chin J Chem Eng 23:296–302. https://doi.org/10.1016/j.cjche.2014.11.011

    Article  CAS  Google Scholar 

  36. Mahmud N, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas MH, Mohammad AW (2021) Effective heterogeneous fenton-like degradation of malachite green dye using the core-shell Fe3O4@SiO2 nano-catalyst. ChemistrySelect 6:865–875. https://doi.org/10.1002/slct.202003937

    Article  CAS  Google Scholar 

  37. Siddique M, Farooq R, Price GJ (2014) Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrason Sonochem 21:1206–1212. https://doi.org/10.1016/j.ultsonch.2013.12.016

    Article  CAS  PubMed  Google Scholar 

  38. Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G (2018) The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J Mol Liq 256:462–470. https://doi.org/10.1016/j.molliq.2018.02.047

    Article  CAS  Google Scholar 

  39. Yang Z, Yang Y, Zhu X, Chen G, Zhang W (2014) An outward coating route to CuO/MnO2 nanorod array films and their efficient catalytic oxidation of acid fuchsin dye. Ind Eng Chem Res 53:9608–9615. https://doi.org/10.1021/ie500358p

    Article  CAS  Google Scholar 

  40. Ahmed HR, Aziz KHH, Agha NN, Mustafa FS, Hinder SJ (2023) Iron-loaded carbon black prepared via chemical vapor deposition as an efficient peroxydisulfate activator for the removal of rhodamine B from water. RSC Adv 13:26252–26266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goebel J, Ault BS, Del Bene JE (2000) Matrix isolation and ab initio study of the hydrogen-bonded complex between H2O2 and (CH3)2O. J Phys Chem A 104:2033–2037

    Article  CAS  Google Scholar 

  42. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochimica et Biophys Acta (BBA)-Biomembranes 1758:994–1003. https://doi.org/10.1016/j.bbamem.2006.02.015

    Article  CAS  Google Scholar 

  43. Dang GH, Le TT, Ta AK, Ho TN, Pham TV, Doan TV, Luong TH (2020) Removal of Congo red and malachite green from aqueous solution using heterogeneous Ag/ZnCo-ZIF catalyst in the presence of hydrogen peroxide. Green Process Synth 9:567–577. https://doi.org/10.1515/gps-2020-0060

    Article  Google Scholar 

Download references

Funding

This research was supported by B2023-TCT-22 project funding from the Ministry of Education and Training, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huynh Giao Dang.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 783 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H.G., Tran, T.V.H., Tran, B.H. et al. Combination of Cu and Zn on ZIF structure for efficient degradation of basic fuchsin in aqueous solution. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02653-7

Keywords

Navigation