Skip to main content
Log in

Using bimetallic ZnCo-ZIFs as an efficient heterogeneous catalyst for the degradation of methyl blue in water in the presence of peroxymonosulfate ion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

ZnCo-ZIFs was successfully synthesized by a solvothermal method in methanol solvent at room conditions and determined physical–chemical properties by a series of characterization techniques. The catalytic activity of ZnCo-ZIFs on Methyl Blue (MB) degradation in the presence of peroxymonosulfate (PMS) was examined by variation of the effective factors including ZnCo-ZIFs dosage, mass ratio of ZnCo-ZIFs:PMS, temperature, reaction time and initial MB concentration. The result showed that MB was mostly degraded at initial MB concentration of 50 mg L−1 with catalyst dosage of 50 mg L−1 and ZnCo-ZIFs:PMS ratio of 1:3 at room temperature within 20 min of reaction. The main mechanism for dye degradation was the Fenton-like reaction via major active species SO4·‾ (sulfate free radical) generated from PMS by Co2+ metal centers in the catalyst frameworks. The ZnCo-ZIFs showed highly efficient catalytic activity and stability compared to both homogeneous (cobalt salt, zinc salt and 2-methylimidazole) and heterogeneous (ZIF-67, ZIF-8, zeolite ZMS-5 and activated carbon) catalysts. The recyclability of the catalyst also showed an impressive result with 93.6% at the 5th recycle. To the best of our knowledge, ZnCo-ZIFs associated with PMS was first reported as a novel Fenton-like heterogeneous catalyst for MB degradation in water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gregory P (2007). In: Hunger K (ed) Industrial dyes: chemistry, properties, applications. John Wiley & Sons, Weinheim

    Google Scholar 

  2. Hussain S, Kamran M, Khan S, Shaheen K, Shah Z, Suo H, Ghani U (2021) Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J of biological macromol 168:383–394

    Article  CAS  Google Scholar 

  3. Shafiq F, Siddique A, Pervez M, Hassan M, Naddeo V, Cai Y, Hou A, Xie K, Khan M, Kim I (2021) Extraction of natural dye from aerial parts of argy wormwood based on optimized Taguchi approach and functional finishing of cotton fabric. Mater 14(19):5850–5869

    Article  CAS  Google Scholar 

  4. Liu M, Wang Z (2021) Adsorption performance of reactive red 2BF onto magnetic Zn0.3Cu0.7Fe2O4 nanoparticles. Mater Res Express 8(2):025014–025025

    Article  CAS  Google Scholar 

  5. Chen J, Wang Z, Lv Z (2021) Adsorption of reactive red 2BF onto Ni0.3Co0.2Zn0.5Fe2O4 nanoparticles fabricated via the ethanol solution of nitrate combustion process. Mater Res Express 8(1):015006–015017

    Article  CAS  Google Scholar 

  6. Oyewo O, Nevondo N, Onwudiwe D, Onyango M (2021) Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite. J of Inorg and Organomet Polym and Mater 31(6):2542–2552

    Article  CAS  Google Scholar 

  7. Shen T, Liu G, Wei L, Zhu Y, Sun S (2019) Construction of ZnS nanoparticles@porous Cu3SnS4 P-N heterojunction for simulated natural sunlight degradation of methyl blue. Mater Lett 253:446–449

    Article  CAS  Google Scholar 

  8. Arora C, Kumar P, Soni S, Mittal J, Mittal A, Singh B (2020) Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. Desalin Water Treat 195:341–352

    Article  CAS  Google Scholar 

  9. Zhang Z, Zhang J, Liu J, Xiong Z, Chen X (2016) Selective and competitive adsorption of azo dyes on the metal–organic framework ZIF-67. Water Air Soil Pollut 227(12):471–483

    Article  Google Scholar 

  10. Santoso E, Ediati R, Istiqomah Z, Sulistiono D, Nugraha R, Kusumawati Y, Bahruji H, Prasetyoko D (2021) Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue. Microporous and Mesoporous Mater 310:110620–110630

    Article  CAS  Google Scholar 

  11. Feng Y, Li Y, Xu M, Liu S, Yao J (2016) Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism. RSC Adv 6(111):109608–109612

    Article  CAS  Google Scholar 

  12. Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34(1):327–333

    Article  CAS  Google Scholar 

  13. Bhuvaneswari K, Palanisamy G, Pazhanivel T, Maiyalagan T, Shanmugam P, Grace A (2021) In-situ development of metal organic frameworks assisted ZnMgAl layered triple hydroxide 2D/2D hybrid as an efficient photocatalyst for organic dye degradation. Chemosphere 270:128616–128626

    Article  CAS  Google Scholar 

  14. Wawrzkiewicz M, Hubicki Z (2016) Anion exchange resins of tri-n-butyl ammonium functional groups for dye baths and textile wastewater treatment. Solvent Extr and Ion Exch 34(6):558–575

    Article  CAS  Google Scholar 

  15. Donkadokula N, Kola A, Naz I, Saroj D (2020) A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev in environ sci and biotechnol 25:1–8

    Google Scholar 

  16. González J, Gamallo M, Conde J, Vargas-Osorio Z, Vázquez C, Piñeiro Y, Rivas J, Feijoo G, Moreira M (2021) Exploiting the potential of supported magnetic nanomaterials as Fenton-like catalysts for environmental applications. Nanomater 11(11):2902–2918

    Article  Google Scholar 

  17. Liang D, Li N, An J, Ma J, Wu Y, Liu H (2021) Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation. Sci Total Environ 753:141809–141826

    Article  CAS  Google Scholar 

  18. Zuo S, Jin X, Wang X, Lu Y, Zhu Q, Wang J, Liu W, Du Y, Wang J (2021) Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Appl Catal B: Environ 282:119551–119558

    Article  CAS  Google Scholar 

  19. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J of Environ Chem Eng 4(1):762–787

    Article  CAS  Google Scholar 

  20. Bokare A, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J of Hazard Mater 275:121–135

    Article  CAS  Google Scholar 

  21. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J of Mater Chem A 2(40):16811–16831

    Article  CAS  Google Scholar 

  22. Park K, Ni Z, Côté A, Choi J, Huang R, Uribe-Romo F, Chae H, O’Keeffe M, Yaghi O (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  CAS  Google Scholar 

  23. Tan J, Bennett T, Cheetham A (2010) Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc Natl Acad Sci 107(22):9938–9943

    Article  CAS  Google Scholar 

  24. Chen Y, Wang C, Wu Z, Xiong Y, Xu Q, Yu S, Jiang H (2015) From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27(34):5010–5016

    Article  CAS  Google Scholar 

  25. Kaur G, Rai R, Tyagi D, Yao X, Li P, Yang X, Zhao Y, Xu Q, Singh S (2016) Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J of Mater Chem A 4(39):14932–14938

    Article  CAS  Google Scholar 

  26. Imawaka K, Sugita M, Takewaki T (2019) Tanaka S (2019) Mechanochemical synthesis of bimetallic CoZn-ZIFs with sodalite structure. Polyhedron 158:290–295

    Article  CAS  Google Scholar 

  27. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M (2018) Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J of the Am Chem Soc 140(5):1812–1823

    Article  CAS  Google Scholar 

  28. Yao M, Ye Y, Chen H, Zhang X (2020) Porous carbon supported Pd as catalysts for boosting formic acid dehydrogenation. Int J of Hydrog Energy 45(35):17398–17409

    Article  CAS  Google Scholar 

  29. Dong S, Li T, Zhang Z, Sun M, An L (2019) Improving electrical contact properties of carbon nanotubes by Co doping using metal-organic framework as template. Mater Lett 253:420–423

    Article  CAS  Google Scholar 

  30. Chaemchuen S, Dai Q, Wang J, Zhu C, Klomkliang N, Yuan Y, Cheng C, Elkadi M, Luo Z, Verpoort F (2021) Enhancing catalytic activity via metal tuning of zeolitic imidazole frameworks for ring opening polymerization of l-lactide. Appl Catal A: General 624:118319–118335

    Article  CAS  Google Scholar 

  31. Lee S, Choi S (2017) Bimetallic zeolitic imidazolate frameworks for symmetric electrical double-layer supercapacitors with aqueous electrolytes. Mater Lett 207:129–132

    Article  CAS  Google Scholar 

  32. Nandigama S, Bheeram V, Mukkamala S (2019) Rapid synthesis of mono/bimetallic (Zn/Co/Zn–Co) zeolitic imidazolate frameworks at room temperature and evolution of their CO2 uptake capacity. Environ Chem Lett 17(1):447–454

    Article  CAS  Google Scholar 

  33. Han X, Ling X, Wang Y, Ma T, Zhong C, Hu W, Deng Y (2019) Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc–air batteries. Angew Chem 131(16):5413–5418

    Article  Google Scholar 

  34. Giao D, Le ThuTA, Nguyen THT, Tan HNT, Doan TVH, Van Toan P (2020) Facile synthesis of bimetallic ZnCo-ZIFs and Ag nanoparticles loading on ZnCo-ZIFs (Ag/ZnCo-ZIFs). Can Tho University Journal of Science 12(3):47–53

    Article  Google Scholar 

  35. Jing H, Wang C, Zhang Y, Wang P, Li R (2014) Photocatalytic degradation of methylene blue in ZIF-8. Rsc Adv 4(97):54454–54462

    Article  CAS  Google Scholar 

  36. Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2017) Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J of Mater Chem A 5(3):952–957

    Article  CAS  Google Scholar 

  37. Mostafazadeh N, Ghoreyshi AA, Pirzadeh K (2018) Optimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr (VI) adsorption from aqueous solution. Iranian Journal of Chemical Engineering 15(4):27–47

    Google Scholar 

  38. Song X, Shao X, Dai L, Fan D, Ren X, Sun X, Luo C, Wei Q (2020) Triple amplification of 3, 4, 9, 10-Perylenetetracarboxylic acid by Co2+-based metal-organic frameworks and silver-cysteine and its potential application for ultrasensitive assay of procalcitonin. ACS Appl Mater & interfaces 12(8):9098–9106

    Article  CAS  Google Scholar 

  39. Chen F, Huang G, Yao F, Yang Q, Zheng Y, Zhao Q, Yu H (2020) Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism. Water Res 173:115559–115571

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huynh Vu Thanh Luong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T.T., Dang, H.G., Luong, H.V.T. et al. Using bimetallic ZnCo-ZIFs as an efficient heterogeneous catalyst for the degradation of methyl blue in water in the presence of peroxymonosulfate ion. Reac Kinet Mech Cat 135, 2099–2114 (2022). https://doi.org/10.1007/s11144-022-02240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02240-8

Keywords

Navigation