Skip to main content
Log in

Highly efficient selective hydrogenation of isophthalonitrile to M-xylenedimethylamine over Co–CaO/g-C3N4 without alkaline additives

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Co–xCaO/g-C3N4 catalysts were prepared using incipient wetness impregnation method and applied in isophthalonitrile hydrogenation to M-xylenedimethylamine. The characterization results and experimental data indicate that introduction of CaO crates large number of basic sites and leads to electron rich Co, hence inhibits the side reaction and improves the selectivity to M-xylenedimethylamine. 10Co–2CaO/g-C3N4 gives the best catalytic performance of 100% conversion of isophthalonitrile and 95% selectivity to M-xylenedimethylamine without any alkaline additives in the reacion system. This work is valuable for the design and preparation of hydrogenation catalysts with rich basic sites and provides a green process for nitrile compounds to amine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Row SW, Chae TY, Yoo KS, Lee SD, Lee DW, Shul Y (2007) Effect of reaction solvent on the hydrogenation of isophthalonitrile for meta-xylylendiamine preparation. Can J Chem Eng 85:925–928

    Article  CAS  Google Scholar 

  2. Shi T, Li H, Yao L, Ji W, Au C-T (2012) Ni-Co-Cu supported on pseudoboehmite-derived Al2O3: highly efficient catalysts for the hydrogenation of organic functional groups. Appl Catal A 425:68–73

    Article  Google Scholar 

  3. Li C, Yu S, Che H, Zhang X, Han J, Mao Y, Wang Y, Liu C, Dong H (2018) Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water. ACS Sustain Chem Eng 6:16437–16447

    Article  CAS  Google Scholar 

  4. Schärringer P, Müller TE, Lercher JA (2008) Investigations into the mechanism of the liquid-phase hydrogenation of nitriles over Raney-Co catalysts. J Catal 253:167–179

    Article  Google Scholar 

  5. Huang Y, Sachtler WM (1999) Catalytic hydrogenation of nitriles over supported mono-and bimetallic catalysts. J Catal 188:215–225

    Article  CAS  Google Scholar 

  6. Infantes-Molina A, Mérida-Robles J, Braos-García P, Rodríguez-Castellón E, Finocchio E, Busca G, Maireles-Torres P, Jiménez-López A (2004) J Catal 225:479–488

    Article  CAS  Google Scholar 

  7. Liao H, Liu S, Hao F, Liu P, You K, Liu D, Luo H (2013) Liquid phase hydrogenation of adiponitrile to 6-aminocapronitrile and hexamethylenediamine over potassium doped Ni/α-Al2O3 catalyst. Reac Kinet Mech Cat 109:475–488

    Article  CAS  Google Scholar 

  8. Verhaak M, Van Dillen A, Geus JW (1994) The selective hydrogenation of acetonitrile on supported nickel catalysts. Catal Lett 26:37–53

    Article  CAS  Google Scholar 

  9. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C (2017) Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 139:14889–14892

    Article  CAS  PubMed  Google Scholar 

  10. Liu W, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2016) Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci 7:5758–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J, Xie S, Si R, Yang F, Miao SJE, Science E (2016) Highly doped and exposed Cu (i)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ Sci 9:3736–3745

    Article  CAS  Google Scholar 

  12. Lan X, Li Y, Du C, She T, Li Q, Bai G (2019) Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO2 conversion. Chemistry 25:8560–8569

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Qiu S, Feng J, Tong Y, Zhou F, Li Q, Song L, Chen S, Wu KH, Su PJ (2020) Confined Fe–Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv Mater 32:2004382

    Article  CAS  Google Scholar 

  14. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139:3336–3339

    Article  CAS  PubMed  Google Scholar 

  15. An S, Zhang G, Wang T, Zhang W, Li K, Song C, Miller JT, Miao S, Wang J, Guo X (2018) High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12:9441–9450

    Article  CAS  PubMed  Google Scholar 

  16. Gong Y, Li M, Li H, Wang YJGC (2015) Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem 17:715–736

    Article  CAS  Google Scholar 

  17. Zhang Z, Liu R, Huang L, Zhou D, Tang F, Liu P (2023) Understanding the reaction route of selectively converting furfural to furan over the alkali-induced Co-Mo2C heterostructure. Chem Eng J 466:143237

    Article  CAS  Google Scholar 

  18. Du H, Zhu H, Chen X, Dong W, Lu W, Luo W, Jiang M, Liu T, Ding YJF (2016) Study on CaO-promoted Co/AC catalysts for synthesis of higher alcohols from syngas. Fuel 182:42–49

    Article  CAS  Google Scholar 

  19. Karimi A, Nasernejad B, Rashidi AM, Tavasoli A, Pourkhalil MJF (2014) Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer-Tropsch synthesis activity, selectivity and stability. Fuel 117:1045–1051

    Article  CAS  Google Scholar 

  20. Jiao G, Ding Y, Zhu H, Li X, Li J, Lin R, Dong W, Gong L, Pei Y, Lu Y (2009) Effect of La2O3 doping on syntheses of C1–C18 mixed linear α-alcohols from syngas over the Co/AC catalysts. Appl Catal A 364:137–142

    Article  CAS  Google Scholar 

  21. Yang H, Wang L, Xu S, Cao Y, He P, Chen J, Zheng Z, Li H (2022) Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method. Green Energy & Environment 7:1361–1376

    Article  CAS  Google Scholar 

  22. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK (2018) A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater 30:1706108

    Article  Google Scholar 

  23. Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel EL, Peng Z, Zhu Z, Qin F, Bao JJ (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668

    Article  CAS  PubMed  Google Scholar 

  24. Tang M, Deng J, Li M, Li X, Li H, Chen Z, Wang YJGC (2016) 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation. Green Chem 18:6082–6090

    Article  CAS  Google Scholar 

  25. Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu QJ (2019) Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed 58:1975–1979

    Article  CAS  Google Scholar 

  26. Li T, Lin H, Ouyang X, Qiu X, Wan ZJAC (2019) In situ preparation of Ru@ N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomers. ACS Catal 9:5828–5836

    Article  CAS  Google Scholar 

  27. Tichit D, Durand R, Rolland A, Coq B, Lopez J, Marion PJ (2002) Selective half-hydrogenation of adiponitrile to aminocapronitrile on Ni-based catalysts elaborated from lamellar double hydroxide precursors. J Catal 211:511–520

    Article  CAS  Google Scholar 

  28. Chen Z, Vorobyeva E, Mitchell S, Fako E, López N, Collins SM, Leary RK, Midgley PA, Hauert R, Pérez-Ramírez J (2018) Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. Natl Sci Rev 5:642–652

    Article  CAS  Google Scholar 

  29. Chae T-Y, Row S-W, Yoo K-S, Lee S-D, Lee D-W (2006) Hydrogenation of isophthalonitrile with 1-methylimidazole as an effective solvent for m-xylenediamine production. Bull Korean Chem Soc 27:361–362

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by NSFC (22078277), Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization, and Environment-friendly Chemical Process Integration Technology Hunan Province Key laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Hang Gao: Methodology, Software, Validation, Investigation, Writing—original draft, Formal analysis, Data curation, Visualization. Yuqin Zhu: Methodology, Software, Validation, Investigation, Writing—original draft, Formal analysis, Data curation, Visualization. Hean Luo: Resources, Supervision, Project administration. Yang Lv: Conceptualization, Methodology, Software, Data curation, Writing—review and editing, Investigation, Supervision, Resources, Visualization, Funding acquisition. Pingle Liu: Resources, Supervision, Writing—review and editing, Project administration, Formal analysis, Funding acquisition.

Corresponding author

Correspondence to Pingle Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 490 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhu, Y., Luo, H. et al. Highly efficient selective hydrogenation of isophthalonitrile to M-xylenedimethylamine over Co–CaO/g-C3N4 without alkaline additives. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02628-8

Keywords

Navigation