Skip to main content
Log in

Oxygen vacancy enhanced photocatalytic performance towards marine microorganisms inactivation over Ag/Bi2O3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, Bi2O3-OV with different concentrations of oxygen vacancies was prepared by reduction method, Ag NPs were loaded onto pure Bi2O3 and Bi2O3-OV by photodeposition. The effect of different electronic structures of the carrier on the performance and reaction mechanism of the Ag-loaded catalysts was also emphasized. The results showed that the sterilization rate of pure Bi2O3 was only 49.56% after half an hour of light exposure, the sterilization rate of Ag/Bi2O3 composite catalyst without vacancies was as high as 76.17%, and the sterilization efficiency of Ag/Bi2O3 composite catalyst with oxygen vacancies was up to 98.21%. The presence of vacancies caused the Ag/Bi2O3 composite catalyst to produce 15.13 μM H2O2, which was nearly twice as much as that of Bi2O3/0.5Ag, and was the main active species for sterilization, while the main active species for sterilization of the Ag/Bi2O3 composite catalyst without vacancies was the hydroxyl radicals generated from the valence band. This work not only enriches the study of the mechanism of inactivation of marine microorganisms by silver-loaded photocatalysts, but also provides a theoretical basis for the advancement of marine pollution treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. David M, Perkovič M, Suban V, Gollasch S (2012) A generic ballast water discharge assessment model as a decision supporting tool in ballast water management. Decis Support Syst 53(1):175–185. https://doi.org/10.1016/j.dss.2012.01.002

    Article  Google Scholar 

  2. Guilbaud J, Wyart Y, Moulin P (2018) Economic viability of treating ballast water of ships by ultrafiltration as a function of the process position. J Mar Sci Technol 24(4):1197–1208. https://doi.org/10.1007/s00773-018-0618-3

    Article  Google Scholar 

  3. Li Z, Hong R, Liu T, Wang Q, Tao C, Lin H, Zhang D (2020) The enhancement of nonlinear absorption of Ag thin film on laser induced defective MoOx buffer layer. Chem Phys Lett 754:137727. https://doi.org/10.1016/j.cplett.2020.137727

    Article  CAS  Google Scholar 

  4. Zhang C, Zhou F, Zhan S, Song Y, Wang F, Lai J (2021) The enhanced photocatalytic inactivation of marine microorganisms over ZnO supported Ag quantum dots by the synthesis of H2O2. Environ Res 197:111129. https://doi.org/10.1016/j.envres.2021.111129

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Zhou F, Zhan S, He Q, Song Y, Zhang C, Lai J (2021) Morphology modulation and performance optimization of nanopetal-based Ag-modified Bi2O2CO3 as an inactivating photocatalytic material. Environ Res 198:111256. https://doi.org/10.1016/j.envres.2021.111256

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Shi R, Shang L, Waterhouse GIN, Zhao J, Zhang Q, Gu L, Zhang T (2020) High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew Chem Int Ed Engl 59(31):13057–13062. https://doi.org/10.1002/anie.202004841

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Wen Z, Huang Y, Duan X, Cao Y, Ye L, Jiang L, Yuan Y (2018) Low-temperature soot combustion over ceria modified MgAl2O4-supported Ag nanoparticles. Catal Commun 111:26–30. https://doi.org/10.1016/j.catcom.2018.03.029

    Article  CAS  Google Scholar 

  8. Lin Y, Cao Y, Yao Q, Chai OJH, Xie J (2020) Engineering noble metal nanomaterials for pollutant decomposition. Ind Eng Chem Res 59(47):20561–20581. https://doi.org/10.1021/acs.iecr.0c04258

    Article  CAS  Google Scholar 

  9. Jeong J-Y, Janardhanam V, Yun H-J, Lee J-H, Kim J-Y, Shim K-H, Choi C-J (2014) Carrier transport mechanism of Ni/Ag Schottky contacts to n-type GaN grown on Si(111) substrate. Jpn J Appl Phys 53:83. https://doi.org/10.7567/jjap.53.08nh01

    Article  Google Scholar 

  10. Duman S, Gürbulak B, Dogan S, Bahtiyari Tekle T (2010) Electrical characterization of Ag/p-GaSe: Gd Schottky barrier diodes. Physica E 42(7):1958–1962. https://doi.org/10.1016/j.physe.2010.02.017

    Article  CAS  Google Scholar 

  11. Lamkin IA, Tarasov SA, Solomonov AV, Mikhailov II (2016) Influence of the composition of the GaAsP solid solution on the Ag-GaAsP barrier height. J Phys Conf Ser 690:012037. https://doi.org/10.1088/1742-6596/690/1/012037

    Article  CAS  Google Scholar 

  12. Allen MW, Alkaisi MM, Durbin SM (2006) Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl Phys Lett 89(10):103520. https://doi.org/10.1063/1.2346137

    Article  CAS  Google Scholar 

  13. Shi H, Zhao Y, Hu X, Liu E, Fan J, Tang Z (2020) Fabrication of Ag quantum dot/SnIn4S8 Schottky junction with enhanced photocatalytic inactivation of E. coli under visible light excitation. J Phys D 53(8):085103. https://doi.org/10.1088/1361-6463/ab5709

    Article  CAS  Google Scholar 

  14. Di J, Xia J, Ji M, Wang B, Yin S, Huang Y, Chen Z, Li H (2016) New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl Catal 188:376–387. https://doi.org/10.1016/j.apcatb.2016.01.062

    Article  CAS  Google Scholar 

  15. Wu C, Li F, Guo T (2013) Resistive switching memory based on three-dimensionally confined Ag quantum dots embedded in ultra thin polyimide layers. J Nanosci 13(2):1173–1176. https://doi.org/10.1166/jnn.2013.6047

    Article  CAS  Google Scholar 

  16. Lamoth M, Plodinec M, Scharfenberg L, Wrabetz S, Girgsdies F, Jones T, Rosowski F, Horn R, Schlögl R, Frei E (2019) Supported Ag nanoparticles and clusters for CO oxidation: size effects and influence of the silver–oxygen interactions. ACS Appl Nano Mater 2(5):2909–2920. https://doi.org/10.1021/acsanm.9b00344

    Article  CAS  Google Scholar 

  17. Dong G, Luo Z, Cao Y, Zheng S, Zhou J, Li W, Zhou X (2021) Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts. J Catal 401:252–261. https://doi.org/10.1016/j.jcat.2021.07.028

    Article  CAS  Google Scholar 

  18. Jiang X, Deng H (2008) Influence of copper species on silver grain size in Ag–CuO–SiO2 ternary nanocomposites. Colloids Surf A 330(2–3):180–183. https://doi.org/10.1016/j.colsurfa.2008.07.049

    Article  CAS  Google Scholar 

  19. Rapallo A, Rossi G, Ferrando R, Fortunelli A, Curley BC, Lloyd LD, Tarbuck GM, Johnston RL (2005) Global optimization of bimetallic cluster structures. I. Size-mismatched Ag–Cu, Ag–Ni, and Au–Cu systems. J Chem Phys 122(19):194308. https://doi.org/10.1063/1.1898223

    Article  CAS  PubMed  Google Scholar 

  20. Vaiano V, Matarangolo M, Murcia JJ, Rojas H, Navío JA, Hidalgo MC (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl Catal 225:197–206. https://doi.org/10.1016/j.apcatb.2017.11.075

    Article  CAS  Google Scholar 

  21. Wang J, Xu X, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B (2020) Oxygen-vacancy-enhanced singlet oxygen production for selective photocatalytic oxidation. ChemSusChem 13:3488–3494. https://doi.org/10.1002/cssc.202000595

    Article  CAS  PubMed  Google Scholar 

  22. Lei B, Cui W, Sheng J, Wang H, Chen P, Li J, Sun Y, Dong F (2020) Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway. Sci Bull (Beijing) 65(6):467–476. https://doi.org/10.1016/j.scib.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  23. Sarina S, Waclawik ER, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15(7):1814–1833. https://doi.org/10.1039/c3gc40450a

    Article  CAS  Google Scholar 

  24. Dastjerdi R, Montazer M, Shahsavan S (2010) A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf B 81(1):32–41. https://doi.org/10.1016/j.colsurfb.2010.06.023

    Article  CAS  Google Scholar 

  25. Hu J, Li H, Huang C, Liu M, Qiu X (2013) Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification. Appl Catal 142–143:598–603. https://doi.org/10.1016/j.apcatb.2013.05.079

    Article  CAS  Google Scholar 

  26. Ye L, Deng K, Xu F, Tian L, Peng T, Zan L (2012) Increasing visible-light absorption for photocatalysis with black BiOCl. Phys Chem Chem Phys 14(1):82–85. https://doi.org/10.1039/c1cp22876e

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Li K, Ye Y, Zhang S, Liu Y, Wang G, Liang C, Zhang H, Zhao H (2021) Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots. Commun Chem 4(1):10. https://doi.org/10.1038/s42004-021-00449-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao X, Shang Y, Liu L, Fu F (2019) Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation. J Colloid Interface Sci 533:649–657. https://doi.org/10.1016/j.jcis.2018.08.091

    Article  CAS  PubMed  Google Scholar 

  29. Su N, Zhou F (2020) Photocatalytic inactivation of marine microorganisms by a Ag/AgCl/ZnWO4 film under UV light. React Kinet Mech Catal 129(2):1077–1089. https://doi.org/10.1007/s11144-020-01729-4

    Article  CAS  Google Scholar 

  30. Wu D, You H, Zhang R, Chen C, Du J (2011) Inactivation of Escherichia coli using UV/Ag-TiO2/O3-mediated advanced oxidation: application to ballast water disinfection. J Chem Technol Biotechnol 86(12):1521–1526. https://doi.org/10.1002/jctb.2667

    Article  CAS  Google Scholar 

  31. Chen D, Wu S, Fang J, Lu S, Zhou G, Feng W, Yang F, Chen Y, Fang Z (2018) A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep Purif 193:232–241. https://doi.org/10.1016/j.seppur.2017.11.011

    Article  CAS  Google Scholar 

  32. Guo S, Zhang X, Zhu W, He K, Su D, Mendoza-Garcia A, Ho SF, Lu G, Sun S (2014) Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J Am Chem Soc 136(42):15026–15033. https://doi.org/10.1021/ja508256g

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, Song Y, He Q, Wang F, Zhan S, Zhou F (2021) H2O2-assisted photocatalysis induced by SPR of BiQDs anchored on BiVO4 for the production of hydroxyl radicals in seawater. J Environ Chem Eng 9(5):105973. https://doi.org/10.1016/j.jece.2021.105973

    Article  CAS  Google Scholar 

  34. Al-Namshah KS, Mohamed RM (2018) Nd-doped Bi2O3 nanocomposites: simple synthesis and improved photocatalytic activity for hydrogen production under visible light. Appl Nanosci 8(5):1233–1239. https://doi.org/10.1007/s13204-018-0756-2

    Article  CAS  Google Scholar 

  35. Wu X, Wang Z, Chen L, Huang X (2003) Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochem Commun 5(11):935–939. https://doi.org/10.1016/j.elecom.2003.09.001

    Article  CAS  Google Scholar 

  36. Huang Y, Qin J, Liu X, Wei D, Seo HJ (2019) Hydrothermal synthesis of flower-like Na-doped α-Bi2O3 and improved photocatalytic activity via the induced oxygen vacancies. J Taiwan Inst Chem Eng 96:353–360. https://doi.org/10.1016/j.jtice.2018.11.029

    Article  CAS  Google Scholar 

  37. HajarHeydari ME, Behjatmanesh-Ardakani R (2018) Role of oxygen vacancy in the adsorption and dissociation of the water molecule on the surfaces of pure and Ni-doped Rutile (110): a periodic fullpotential DFT study. Surf Sci 679:218–224. https://doi.org/10.1016/j.susc.2018.09.014

    Article  CAS  Google Scholar 

  38. Wang Y, Zhou F, Zhan S, Sun J, Xu R (2023) Study on inactivation of marine microorganisms by AgI/ Bi2O2CO3 composite photocatalyst. Catalysts 136:535–548. https://doi.org/10.1007/s11144-022-02341-4

    Article  CAS  Google Scholar 

  39. Xian T, Sun X, Di L, Zhou Y, Ma J, Li H, Yang H (2019) Carbon quantum dots (CQDs) decorated Bi2O3-X hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7. Catalysts 9(12):1031. https://doi.org/10.3390/catal9121031

    Article  CAS  Google Scholar 

  40. Jung E, Shin H, Lee BH, Efremov V, Lee S, Lee HS, Kim J, Hooch Antink W, Park S, Lee KS, Cho SP, Yoo JS, Sung YE, Hyeon T (2020) Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat Mater 19(4):436–442. https://doi.org/10.1038/s41563-019-0571-5

    Article  CAS  PubMed  Google Scholar 

  41. Chang S, Li M, Hua Q, Zhang L, Ma Y, Ye B, Huang W (2012) Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J Catal 293:195–204. https://doi.org/10.1016/j.jcat.2012.06.025

    Article  CAS  Google Scholar 

  42. Ma X, Xiao M, Yang X, Yu X, Ge M (2021) Boosting benzene combustion by engineering oxygen vacancy-mediated Ag/CeO2-Co3O4 catalyst via interfacial electron transfer. J Coll Interface Sci 594:882–890. https://doi.org/10.1016/j.jcis.2021.03.076

    Article  CAS  Google Scholar 

  43. Hu Q, Fan Z, Huang A, Zhang X, Zhao R, Gao Q, Ji Y, Dou W, Wang M, Shi H, Xiao Z, Jiang X, Chu PK (2019) Competitive conductive mechanism of interstitial Ag and oxygen vacancies in Ag/Ta2O5/Pt stack. J Appl Phys 126(6):065104. https://doi.org/10.1063/1.5109267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52271340, 51879018).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 52271340, 51879018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5446 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Y., Bai, G., Wang, W. et al. Oxygen vacancy enhanced photocatalytic performance towards marine microorganisms inactivation over Ag/Bi2O3. Reac Kinet Mech Cat 137, 1757–1770 (2024). https://doi.org/10.1007/s11144-024-02584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02584-3

Keywords

Navigation