Skip to main content
Log in

Development and validation of a kinetic-spectrophotometric method for the trace determination of 2-methyl-4-chlorophenoxyacetic acid in baby teas and baby food samples using solid phase extraction followed by high-performance liquid chromatography

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a kinetic-spectrophotometric method for 2-methyl-4-chlorophenoxy acetic acid (MCPA) determination and apply it for pesticide determination in baby tea and baby food samples, using solid-phase extraction (SPE) followed by the kinetic-spectrophotometric method and the high-performance liquid chromatography (HPLC) method. This method is based on the inhibited effect of MCPA on the oxidation of sulfanilic acid (SA) by hydrogen peroxide in the presence of Co2+ ion as catalyst in alkaline medium. The reaction was monitored spectrophotometrically by measuring the increase in absorbance with time of the reaction product at 368 nm. Under the experimental conditions used, MCPA showed a linear dynamic range of 0.14 to 2.0 μg mL−1, and from 2.0 to 20.00 μg mL−1 with relative standard deviations (RSD) from 1.07 to 4.35%. The limit of detection and the limit of quantification were 0.052 and 0.107 μg mL−1. The method was successfully applied to determination of MCPA residues in baby tea and baby food samples. Solid-phase extraction (SPE) was used for extraction of MCPA from samples using Chromabond® C18 cartridges. The HPLC method was used as a comparative method to verify the results of kinetic method. The results obtained by two different methods showed good agreement. The proposed method is highly sensitive, simple, easy, requires cheap reagents, and leads to good recovery levels. It is linear, precise, and accurate. It can be successfully used for the routine analysis of MCPA in baby tea samples, and baby food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carroquino MJ, Posada M, Landrigan PJ (2012) Environmental toxicology: children at risk. Environ Toxicol 4:239–291. https://doi.org/10.1007/978-1-4614-5764-0_11

    Article  Google Scholar 

  2. Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A, Phung DT, Sadler R, Connell D (2022) Exposure routes and health risks associated with pesticide application. Toxics 10(6):335. https://doi.org/10.3390/toxics10060335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnen BG (1999) Herbicides and food quality a misfit? In Proceedings of Brighton Conference Weeds, 3rd edn. British Crop Protection Council, London

    Google Scholar 

  4. Manahan SE (2000) Environmental chemistry, 7th edn. CRC Press, Boca Raton

    Google Scholar 

  5. Olsvik PA, Samuelsen OB, Erdal A, Holmelid B, Lunestad BT (2013) Toxicological assessment of the anti-salmon lice drug difubenzuron on Atlantic cod Gadus morhua. Dis Aquat Org 105:27–43. https://doi.org/10.3354/dao02613

    Article  CAS  Google Scholar 

  6. Wang H, Hu L, Li W, Lu R, Zhang S, Zhou W, Gao H (2016) A rapid and simple pretreatment method for benzoylurea insecticides in honey samples using in-syringe dispersive liquid–liquid microextraction based on the direct solidification of ionic liquids. J Chromatogr A 1471:60–67. https://doi.org/10.1016/j.chroma.2016.10.027

    Article  CAS  PubMed  Google Scholar 

  7. Hammami B, Bahri M, Hassine SB, Driss MR (2017) Development of liquid chromatography separation and a solid-phase extraction method for phenoxy alkanoic acid herbicides in water. Mod Chem Appl 5:1000241. https://doi.org/10.4172/2329-6798.1000241

    Article  CAS  Google Scholar 

  8. Yang F, Yang Bian Z (2013) Determination of chlorinated phenoxy acid herbicides in tobacco by modified QuEChERS extraction and highperformance liquid chromatography/tandem mass spectrometry. J AOAC Int 96:1134–1137. https://doi.org/10.5740/jaoacint.12-467

    Article  CAS  PubMed  Google Scholar 

  9. Thorstensen CW, Lode O, Christiansen AL (2000) Development of a solid-phase extraction method for phenoxy acids and bentazone in water and comparison to a liquid-liquid extraction method. J Agric Food Chem 48:5829–5833. https://doi.org/10.1021/jf0000124

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Ee KH, Kee Lee H (2005) Automated dynamic liquid–liquid–liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082:121–127. https://doi.org/10.1016/j.chroma.2005.05.077

    Article  CAS  PubMed  Google Scholar 

  11. Guo T, Wang X, Wang H, Hu Y, Zhang S, Zhao R (2019) Determination of phenoxy acid herbicides in cereals using high-performance liquid chromatography-tandem mass spectrometry. J Food Prot 82:1160–1165. https://doi.org/10.4315/0362-028X.JFP-18-558

    Article  CAS  PubMed  Google Scholar 

  12. Liu JF, Toräng L, Mayer P, Jönsson JÅ (2007) Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes. J Chromatogr 1160:56–63. https://doi.org/10.1016/j.chroma.2007.04.010

    Article  CAS  Google Scholar 

  13. Wu J, Kim HE, Hian KL (2005) Automated dynamic liquid-liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082:121–127. https://doi.org/10.1016/j.chroma.2005.05.077

    Article  CAS  PubMed  Google Scholar 

  14. Biancolillo A, Maggi AM, Bassi S, Marini F, D’Archivio AA (2020) Retention modelling of phenoxy acid herbicides in reversed-phase HPLC under gradient elution. Molecules 25:1262. https://doi.org/10.3390/molecules25061262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu CC (2017) Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry (QuEChERS, GC/MS/MS. Food Chem 229:580–587. https://doi.org/10.1016/j.foodchem.2017.02.081

    Article  CAS  PubMed  Google Scholar 

  16. Jahanmard E, Ansari F, Feizi M (2016) Evaluation of quechers sample preparation and gc mass spectrometry method for the determination of 15 pesticide residues in tomatoes used in salad production plants. Iran J Public Health 45:230–238. https://ijph.tums.ac.ir/index.php/ijph/article/view/6108

    PubMed  PubMed Central  Google Scholar 

  17. Anastassiades M, Lehotay SJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioningand “dispersive solid-phaseextraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431. https://doi.org/10.1093/jaoac/86.2.412

    Article  CAS  PubMed  Google Scholar 

  18. Saraji M, Farajmand B (2008) Application of single-drop microextraction combined with in-microvial derivatization for determination of acidic herbicides in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1178:17–23. https://doi.org/10.1016/j.chroma.2007.11.056

    Article  CAS  PubMed  Google Scholar 

  19. Steinborn A, Alder L, Spitzke M, Dörk D, Anastassiades M (2017) Development of a QuEChERS-based method for the simultaneous determination of acidic pesticides, their esters, and conjugates following alkaline hydrolysis. J Agric Food Chem 65:1296–1305. https://doi.org/10.1021/acs.jafc.6b05407

    Article  CAS  PubMed  Google Scholar 

  20. Geerdink RB, Kooistra-Sijpersma A, Tiesnitsch J, Kienhuis PGM, Brinkman UAT (1999) Determination of polar pesticides with atmospheric pressure chemical ionisation mass spectrometry–mass spectrometry using methanol and/or acetonitrile for solid-phase desorption and gradient liquid chromatography. J Chromatogr A 863:147–155. https://doi.org/10.1016/S0021-9673(99)00898-5

    Article  CAS  PubMed  Google Scholar 

  21. Tölgyesi A, Korozs G, Tóth E, Bálint M, Ma X, Sharma VK (2022) Automation in quantifying phenoxy herbicides and bentazon in surface water and groundwater using novel solid phase extraction and liquid chromatography tandem mass spectrometry. Chemosphere 286:131927. https://doi.org/10.1016/j.chemosphere.2021.131927

    Article  CAS  PubMed  Google Scholar 

  22. Diez C, Traag W, Zommer P, Marinero P, Atienza J (2006) Comparison of an acetonitrile extraction/partitioning and “dispersive solid-phase extraction” method with classical multi-residue methods for the extraction of herbicide. J Chromatogr A 1131:11–23. https://doi.org/10.1016/j.chroma.2006.07.046

    Article  CAS  PubMed  Google Scholar 

  23. Laganà A, Bacaloni A, De Leva I, Faberi A, Fago G, Marino A (2002) Occurrence and determination of herbicides and their major transformation products in environmental waters. Anal Chim Acta 462:87–198. https://doi.org/10.1016/S0003-2670(02)00351-3

    Article  Google Scholar 

  24. Koesukwiwat U, Sanguankaew K, Leepipatpiboon N (2008) Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 626:10–20. https://doi.org/10.1016/j.aca.2008.07.034

    Article  CAS  PubMed  Google Scholar 

  25. Min ZW, Hong S-M, Yang I-C, Kwon H-Y, Kim T-K, Kim D-H (2012) Analysis of Pesticide residues in brown rice using modified QuEChERS multiresidue method combined with electrospray ionization-liquid chromatography-tandem mass spectrometric detection. J Korean Soc Appl Biol Chem 55:769–775. https://doi.org/10.1007/s13765-012-2153-y

    Article  CAS  Google Scholar 

  26. Kaczyński P, Łozowicka B (2017) One-step QuEChERS-based approach to extraction and cleanup in multiresidue analysis of sulfonylurea herbicides in cereals by liquid chromatography-tandem mass spectrometry. Food Anal Method 10:147–160. https://doi.org/10.1007/s12161-016-0564-9

    Article  Google Scholar 

  27. Lee Y-J, Rahman MdM, Abd El-Aty AM, Choi J-H, Chung H, Kim S-W, Abdel-Aty A, Shin H-C, Shim J (2017) Detection of three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QuEChERS method and liquid chromatography-tandem mass spectrometry. Food Chem 210:442–450. https://doi.org/10.1016/j.foodchem.2016.05.005

    Article  CAS  Google Scholar 

  28. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:2958–2969. https://doi.org/10.1016/j.chroma.2008.09.041

    Article  CAS  PubMed  Google Scholar 

  29. Ji Z, Cheng J, Song C, Hu N, Zhou W, Suo Y, Sun Z, You J (2019) A highly sensitive and selective method for determination of phenoxy carboxylic acids from environmental water samples by dispersive solid-phase extraction coupled with ultra high performance liquid chromatography-tandem mass spectrometry. Talanta 191:313–323. https://doi.org/10.1016/j.talanta.2018.08.055

    Article  CAS  PubMed  Google Scholar 

  30. McManus SL, Moloney M, Richards KG, Coxon CE, Danaher M (2014) Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 19:20627–20649. https://doi.org/10.3390/molecules191220627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xuefeng J, Shuang L, Gege W, Lin Z, Jiping M (2021) Determination of seven phenoxy acid herbicides in water by dispersive solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry based on cationic metal-organic framework mixed matrix membrane. Chin J Chromatogr 39:896–904. https://doi.org/10.3724/SP.J.1123.2021.01006

    Article  CAS  Google Scholar 

  32. Smarzewska S, Jasińska A, Ciesielski W, Guziejewski D (2016) First electroanalytical studies of profluralin with square wave voltammetry using glassy carbon electrode. Electroanalysis 28:1–6. https://doi.org/10.1002/elan.201600562

    Article  CAS  Google Scholar 

  33. Skrzypczyńska K, Kuśmierek K, Świątkowski A (2016) Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J Electroanal Chem 766:8–15. https://doi.org/10.1016/j.jelechem.2016.01.025

    Article  CAS  Google Scholar 

  34. Liu H, Chen M, Lin Y, Liu Y (2017) Electrochemical study of the herbicide paraquat based on a graphene-zinc oxide nanocomposite. Int J Electrochem Sci 12:8599–8608. https://doi.org/10.20964/2017.09.15

    Article  CAS  Google Scholar 

  35. Djurdjić S, Vukojević V, Jevtić S, Pergal MV, Petković BB, Stanković DM (2018) Herbicide clomazone detection using electroanalytical approach using boron doped diamond electrode. Int J Electrochem Sci 13:2791–2799. https://doi.org/10.20964/2018.03.39

    Article  CAS  Google Scholar 

  36. Białek A, Skrzypczyńska K, Kuśmierek K, Świątkowski A (2019) Voltammetric determination of MCPA, 4-chloro-o-cresol and o-cresol in water using a modified carbon paste electrode. Int J Electrochem Sci 14:228–237. https://doi.org/10.20964/2019.01.2037

    Article  Google Scholar 

  37. Farhadi K, Matin AA, Hashemi P (2009) LC determination of trace amounts of phenoxyacetic acid herbicides in water after dispersive liquid-liquid microextraction. Chromatography 69:45–49. https://doi.org/10.1365/s10337-008-0815-z

    Article  CAS  Google Scholar 

  38. Pecev-Marinković E, Miletić A, Tošić S, Pavlović A, Kostić D, Rašić Mišić I, Dekić V (2019) Optimization and validation of the kinetic spectrophotometric method for quantitative determination of the pesticide atrazine and its application in infant formulae and cereal-based baby food. J Sci Food Agric 99:5424–5431. https://doi.org/10.1002/jsfa.9803

    Article  CAS  PubMed  Google Scholar 

  39. Sailani R, Pareek D, Jangid K, Khandelwal CL, Sharma PD (2014) Kinetics and mechanism of electron transfer reactions: oxidation of sulfanilic acid by peroxomonosulfate in aqueous acidic medium. Chem Sci Rev Lett 3:166–177

    CAS  Google Scholar 

  40. Kolthoff MI, Sandell BE (1963) Textbook of quantitative inorganic analysis, 3d edn. Macmillan, New York

    Google Scholar 

  41. Luruye YY (1989) Spravochnik po Analiticheskoi Khimi. Moskva, Khimiya

    Google Scholar 

  42. Wang CC, Jing HP, Zhang YQ, Wang P, Gao SJ (2015) Three coordination compounds of cobalt with organic carboxylic acids and 1,10-phenanthroline as ligands: syntheses, structures and photocatalytic properties. Transition Met Chem 40:573–584. https://doi.org/10.1007/s11243-015-9950-1

    Article  CAS  Google Scholar 

  43. Jacimirskii KB (1967) Kinetic methods in analysis. Chimia, Moskva

    Google Scholar 

  44. Müller H, Otto M (1980) Katalytische Methoden in Der Spuren Analyse. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  45. Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. Analyst 116:3–14. https://doi.org/10.1039/AN9911600003

    Article  CAS  Google Scholar 

  46. Bendito DP, Silva M (1988) Kinetic methods in analytical chemistry. Ellis Horwood, Chichester

    Google Scholar 

  47. Mottola HA (1988) Kinetic aspects of analytical chemistry. Wiley, New York

    Google Scholar 

  48. Prichard E, Barwick V (2007) Quality assurance in analytical chemistry. Wiley, Teddington

    Book  Google Scholar 

  49. Hartmann C, Verbeke JS, Penninckx W, Heyden YV, Vankeerberghen P, Massart DL (1995) Reappraisal of hypothesis testing for method validation: detection of systematic error by comparing the means of two methods or of two laboratories. Anal Chem 67:4491–4499. https://doi.org/10.1021/ac00120a011

    Article  CAS  Google Scholar 

  50. Skoog DA, West DM, James Holler F, Crouch SR (2013) Fundamentals of analytical chemistry, 9th edn. Brooks Cole, Belmont

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement number 451-03-47/2023-01/200124). The authors are grateful for the financial support provided by this Ministry.

Author information

Authors and Affiliations

Authors

Contributions

EP-M: Conceptualization, Investigation, Formal analysis, Writing—original draft. AMĆ: Investigation, data curation. AP: Validation, Writing—review & editing. IRM: Partly experimental supervision, methodology, Writing—review & editing. JM: Investigation, resources. ES: visualization, supervision.

Corresponding author

Correspondence to Emilija Pecev-Marinković.

Ethics declarations

Competing interests

We declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecev-Marinković, E., Miletić Ćirić, A., Pavlović, A. et al. Development and validation of a kinetic-spectrophotometric method for the trace determination of 2-methyl-4-chlorophenoxyacetic acid in baby teas and baby food samples using solid phase extraction followed by high-performance liquid chromatography. Reac Kinet Mech Cat 137, 699–717 (2024). https://doi.org/10.1007/s11144-023-02562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02562-1

Keywords

Navigation