Skip to main content
Log in

Photocatalytic degradation of aflatoxin B1 by porous carbon nitrides under visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Porous graphitic carbon nitride (g-C3N4), which exhibits a sensitive response to visible light, was prepared through a simple thermal condensation process. It was then used to investigated its efficiency in degrading aflatoxin B1 (AFB1). The factors affecting the degradation efficiency of AFB1, including precursors of g-C3N4, visible light sources, pH value, and irradiation time were investigated. The porous g-C3N4 prepared using melamine as the precursor, exhibits improved crystallization performance and higher photocatalytic activity. The degradation rate of AFB1 reached 98% under the visible light of a metal halide lamp for 90 min, and the degradation process was fitted with the pseudo-first-order kinetic model. In addition, superoxide radicals (·O2) and holes (h+) play important roles in reducing AFB1. The five degradation products primarily result from damage to the lactone and furan ring structure, which initially demonstrate a decrease in AFB1 toxicity. This study provides an effective, environmentally-friendly, and practical approach for reducing AFB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Data Availability

The datasets are not publicly available due to the participants of this study did not agree for their data to be shared publicly, but are available from the corresponding author on reasonable request.

References

  1. Stoev SD (2013) Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit Rev Food Sci Nutr 53(9):887–901. https://doi.org/10.1080/10408398.2011.571800

    Article  CAS  PubMed  Google Scholar 

  2. Stoloff L (1989) Aflatoxin is not a probable human carcinogen: the published evidence is sufficient. Regul Toxicol Pharmacol 10(3):272–283. https://doi.org/10.1016/0273-2300(89)90054-8

    Article  CAS  PubMed  Google Scholar 

  3. Matumba L, Poucke CV, Ediage EN et al (2015) Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Addit Contam A 32(6):960–969. https://doi.org/10.1080/19440049.2015.1029535

    Article  CAS  Google Scholar 

  4. Pankaj SK, Shi H, Keener KM et al (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83. https://doi.org/10.1016/j.tifs.2017.11.007

    Article  CAS  Google Scholar 

  5. Luo Y, Liu X, Li J (2018) Updating techniques on controlling mycotoxins—a review. Food Control 89:123–132. https://doi.org/10.1016/j.foodcont.2018.01.016

    Article  CAS  Google Scholar 

  6. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  7. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B. https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  Google Scholar 

  8. Saravani AZ, Nadimi M, Aroon MA et al (2019) Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. J Alloys Compds 803:291–306. https://doi.org/10.1016/j.jallcom.2019.06.245

    Article  CAS  Google Scholar 

  9. Ge M, Cao C, Huang J et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4(18):6772–6801. https://doi.org/10.1039/C5TA09323F01.01609.182

    Article  CAS  Google Scholar 

  10. Wu SJ, Wang F, Li Q et al (2020) Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chem 323:126823. https://doi.org/10.1016/j.foodchem.2020.126823

    Article  CAS  PubMed  Google Scholar 

  11. Ni SY, Fu ZR, Li L et al (2022) Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf A 649:129475. https://doi.org/10.1016/j.colsurfa.2022.129475

    Article  CAS  Google Scholar 

  12. Li JT, Wu NQ (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384. https://doi.org/10.1039/c4cy00974f

    Article  CAS  Google Scholar 

  13. Yang MQ, Gao M, Hong M et al (2018) Solar-energy capture: visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv Mater 30(47):1870363. https://doi.org/10.1002/adma.201870363

    Article  CAS  Google Scholar 

  14. Katsumata H, Higashi F, Kobayashi Y et al (2019) Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light. Sci Rep 9(1):14873. https://doi.org/10.1038/s41598-019-49949-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh WD, Lok LW, Veksha A et al (2018) Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies. Chem Eng J 333:739–749. https://doi.org/10.1016/j.cej.2017.09.182

    Article  CAS  Google Scholar 

  16. Hai BT, Bae S, Cho J et al (2022) Advances in application of g–C3N4-based materials for treatment of polluted water and wastewater via activation of oxidants and photoelectrocatalysis: a comprehensive review. Chemosphere 286:131737. https://doi.org/10.1016/j.chemosphere.2021.131737

    Article  CAS  Google Scholar 

  17. Zhang R, Zhang X, Liu S et al (2021) Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2021.111263

    Article  Google Scholar 

  18. Mao J, Zhang LX, Wang HT et al (2018) Facile fabrication of nanosized graphitic carbon nitride sheets with efficient charge separation for mitigation of toxic pollutant. Chem Eng J 342:30–40. https://doi.org/10.1016/j.cej.2018.02.076

    Article  CAS  Google Scholar 

  19. Chen X, Chu B, Gu Q et al (2021) Facile fabrication of protonated g-C3N4/oxygen-doped g-C3N4 homojunction with enhanced visible photocatalytic degradation performance of deoxynivalenol. J Environ Chem Eng 9(6):106380. https://doi.org/10.1016/j.jece.2021.106380

    Article  CAS  Google Scholar 

  20. Oseghe EO, Akpotu SO, Mombeshora ET et al (2021) Multi-dimensional applications of graphitic carbon nitride nanomaterials—a review. J Mol Liq 344:117820. https://doi.org/10.1016/j.molliq.2021.117820

    Article  CAS  Google Scholar 

  21. Yao S, Xue S, Peng S et al (2018) Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Appl Phys 124:1–10. http://refhub.elsevier.com/S0167-7322(21)02545-9/h2005

  22. Zheng Q, Durkin DP, Elenewski JE et al (2016) Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment. Environ Sci Technol 50(23):12938–12948. https://doi.org/10.1021/acs.est.6b02579

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Liu J, Guan W et al (2012) Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4(17):5300–5303. https://doi.org/10.1039/c2nr30948c

    Article  CAS  PubMed  Google Scholar 

  24. Goettmann F, Fischer A, Antonietti M et al (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed 45(27):4467–4471. https://doi.org/10.1002/anie.200600412

    Article  CAS  Google Scholar 

  25. Gang Y, Feng X, Xiao L et al (2017) Tuning of the photocatalytic performance of g-C3N4 by polyoxometalates under visible light. Dalton Trans 46:16019–16024. https://doi.org/10.1039/c7dt03372a

    Article  CAS  Google Scholar 

  26. Zhou Y, Zhang L, Liu J et al (2015) Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J Mater Chem A 3(7):3862–3867. https://doi.org/10.1039/C4TA05292G

    Article  CAS  Google Scholar 

  27. Liang Q, Li Z, Huang ZH et al (2016) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25(44):6885–6892. https://doi.org/10.1002/adfm.201503221

    Article  CAS  Google Scholar 

  28. Han Q, Wang B, Zhao Y et al (2015) A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew Chem Int Ed 127(39):11595–11599. https://doi.org/10.1002/anie.201504985

    Article  CAS  Google Scholar 

  29. Chamorro-Posada P, Dante RC, Vázquez-Cabo J et al (2020) Experimental and theoretical investigations on a CVD grown thin film of polymeric carbon nitride and its structure. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2020.108169

    Article  Google Scholar 

  30. Dong L, Jiang Z, Zhu C et al (2016) Graphene-analogue BN-modified microspherical BiOI photocatalysts driven by visible light. Dalton Trans 45:2505–2516. https://doi.org/10.1039/C5DT03408F

    Article  CAS  Google Scholar 

  31. Vinu A, Ariga K, Mori T et al (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv Mater 17(13):1648–1652. https://doi.org/10.1002/adma.200401643

    Article  CAS  Google Scholar 

  32. Ma F, Cai XF, Mao J et al (2021) Adsorptive removal of aflatoxin B1 from vegetable oils via novel adsorbents derived from a metal–organic framework. J Hazard Mater 412:125170. https://doi.org/10.1016/j.jhazmat.2021.125170

    Article  CAS  PubMed  Google Scholar 

  33. Andronic L, Enesca A, Vladuta C et al (2009) Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem Eng J 152(1):64–71. https://doi.org/10.1016/j.cej.2009.03.031

    Article  CAS  Google Scholar 

  34. Lente G (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer. http://www.springer.com/gp/book/9783319154817

  35. Sun SM, Zhao R, Xie YL et al (2021) Reduction of aflatoxin B1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chem 343(1):128521. https://doi.org/10.1016/j.foodchem.2020.128521

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Jin Q, Tao G et al (2010) LC–MS and UPLC–quadrupole time-of-flight MS for identification of photodegradation products of aflatoxin B1. Chromatographia 71(1–2):107–112. https://doi.org/10.1365/s10337-009-1354-y

    Article  CAS  Google Scholar 

  37. Wang F, Xie F, Xue X et al (2011) Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1 in methanol–water solution. J Hazard Mater 192(3):1192–1202. https://doi.org/10.1016/j.jhazmat.2011.06.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Cultivation Programme for Young Backbone Teachers in Henan University of Technology (No. 21420144), a Joint Fund Project of Provincial Science and Technology R&D Plan (No. 222103810079), National Natural Science Foundation of China (No. 32001808), and Key R&D Projects in Henan Province (No. 231111113300).

Author information

Authors and Affiliations

Authors

Contributions

SS: Conceptualization, Methodology, Writing—original draft. JL: Data curation, Investigation. YL: Methodology, Data curation. YX: Supervision, Writing—review and editing.

Corresponding author

Correspondence to Yanli Xie.

Ethics declarations

Conflict of interest

None. Non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1283 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Li, J., Liu, Y. et al. Photocatalytic degradation of aflatoxin B1 by porous carbon nitrides under visible light. Reac Kinet Mech Cat 137, 1125–1139 (2024). https://doi.org/10.1007/s11144-023-02556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02556-z

Keywords

Navigation