Skip to main content
Log in

Carrier synergistic effect of iron based catalysts for CO hydrogenation to lower olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Three types of catalyst samples, namely alumina carried Fe/K, zinc aluminate carried Fe/K, and (zinc aluminate + alumina) composite carried Fe/K, were prepared under calcination conditions of 350 ºC. The catalysts were characterized by XRD, ICP-OES, N2 physical adsorption, field emission electron microscopy as well as CO2-TPD. The performances of the catalysts in CO hydrogenation were tested in a fixed bed reactor. The results show that under similar conversions, the C2=–C4= hydrocarbon selectivity of the prepared (zinc aluminate + alumina) composite carried Fe/K catalyst can reach 5 times that of the prepared alumina carried Fe/K catalyst and 9 times that of the prepared zinc aluminate carried Fe/K catalyst, exhibiting a typical synergistic effect based on carrier composition. The basis for this synergistic effect is the significant difference in base sites on the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao B, Huang X, Ding Y, Bi Y (2023) Bias-free solar-driven syngas production: a Fe2O3 photoanode featuring single-atom cobalt integrated with a silver-palladium cathode. Angew Chem Int Ed. https://doi.org/10.1002/anie.202213067

    Article  Google Scholar 

  2. Wang Z-H, Cao J-P, Tang W, He Z-M, Yang F-L, Wang Z-Y, Zhao X-Y (2023) Facile synthesis of low-cost Co-Cu/C alloy catalysts for hydrogen-rich syngas production from low-temperature steam reforming of biomass tar. Chem Eng Sci. https://doi.org/10.1016/j.ces.2022.118370

    Article  Google Scholar 

  3. Okonye LU, Yao Y, Ren J, Liu X, Hildebrandt D (2023) A perspective on the activation energy dependence of the Fischer-Tropsch synthesis reaction mechanism. Chem Eng Sci. https://doi.org/10.1016/j.ces.2022.118259

    Article  Google Scholar 

  4. Duan Y, Zhang W, Sun H, Lu W. (2023) Adsorption and activation of CO on perfect and defective h-Fe7C3 surfaces for Fischer-Tropsch synthesis. Mol Catal 541: https://doi.org/10.1016/j.mcat.2023.113081

  5. Khasu M, Marquart W, Kooyman PJ, Drivas C, Isaacs MA, Mayer AJ, Dann SE, Kondrat SA, Claeys M, Fischer N (2023) Empowering catalyst supports: a new concept for catalyst design demonstrated in the Fischer-Tropsch synthesis. ACS Catal 13:6862–6872

    Article  CAS  Google Scholar 

  6. Han X, Huang S, Ma X (2023) Interface-induced phase evolution and spatial distribution of Fe-based catalysts for Fischer-Tropsch synthesis. ACS Catal 13:6525–6535

    Article  CAS  Google Scholar 

  7. Zhao Z, Li Y, Zhu H, Yuan L, Ding Y (2023) A review of Co/Co2C-based catalysts in Fischer-Tropsch synthesis: from fundamental understanding to industrial applications. Chem Commun 59:3827–3837

    Article  CAS  Google Scholar 

  8. Zhang B, Yao J, Wang Y, Gao W, Kugue Y, Guo X, He Y, Yang G, Tsubaki N (2023) Effects of zeolite morphologies on CO conversion to aromatics via a modified Fischer-Tropsch synthesis pathway. J Chem Technol Biotechnol 98:98–105

    Article  CAS  Google Scholar 

  9. Kern C, Jess A (2023) Improvement of a multi-tubular Fischer-Tropsch reactor with gas recycle by appropriate combination of axial activity distribution and gas velocity. Catal Sci Technol 13:2212–2222

    Article  CAS  Google Scholar 

  10. Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y (2023) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48(5):3193–3228

    Google Scholar 

  11. Torres Galvis HM, Bitter JH, Ruitenbeek M, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838

    Article  CAS  PubMed  Google Scholar 

  12. Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. J Catal 303:22–30

    Article  CAS  Google Scholar 

  13. Xu Y, Li X, Gao J, Wang J, Ma G, Wen X, Yang Y, Li Y, Ding M (2021) A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371:610–613

    Article  CAS  PubMed  Google Scholar 

  14. Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87

    Article  CAS  PubMed  Google Scholar 

  15. Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068

    Article  CAS  PubMed  Google Scholar 

  16. Cheng K, Gu B, Liu XL, Kang JC, Zhang QH, Wang Y (2016) Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew Chem Int Ed 55:4725–4728

    Article  CAS  Google Scholar 

  17. Yu Y, Xu Y, Cheng D, Chen Y, Chen F, Lu X, Huang Y, Ni S (2014) Transformation of syngas to light hydrocarbons over bifunctional CuO-ZnO/SAPO-34 catalysts: the effect of preparation methods. React Kinet Mech Catal 112:489–497

    Article  CAS  Google Scholar 

  18. Liu Z, Jia G, Zhao C, Xing Y (2021) Selective iron catalysts for direct Fischer-Tropsch synthesis to light olefins. Ind Eng Chem Res 60:6137–6146

    Article  CAS  Google Scholar 

  19. Liu Z, Jia G, Zhao C, Xing Y (2023) Effective Fe/K catalyst for Fischer–Tropsch to light alkenes. Catal Lett. Article in Press. https://doi.org/10.1007/s10562-023-04296-0

  20. Xing Y, Guo X, Jia G, Fang S, Zhao C, Liu Z (2020) Investigations on the Zn/Fe ratio and activation route during CO hydrogenation over porous iron/spinel catalysts. React Kinet Mech Catal 129:755–772

    Article  CAS  Google Scholar 

  21. Xing Y, Liu Z, Xue Y, Wu D, Fang S (2016) Variation trends of CO hydrogenation performance of (Al)-O-(Zn) supported cobalt nanocomposites: Effects of gradual doping with Zn-O Lewis base. Catal Lett 146:682–691

    Article  CAS  Google Scholar 

  22. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simmieniewska T (1985) Reporting physisorption data for gas​/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  23. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-​Tropsch synthesis. J Catal 15:190–199

    Article  CAS  Google Scholar 

  24. Maitlis PM, Zanotti V (2009) The role of electrophilic species in the Fischer-Tropsch reaction. Chem Commun 13:1619–1634

    Article  Google Scholar 

  25. Prieto G, De Mello MIS, Concepción P, Murciano R, Pergher SBC, Martıńez A (2015) Cobalt-catalyzed Fischer-Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catal 5:3323–3335

    Article  CAS  Google Scholar 

  26. Turner ML, Marsih N, Mann BE, Quyoum R, Long HC, Maitlis PM (2002) Investigations by 13C NMR spectroscopy of ethene-initiated catalytic CO hydrogenation. J Am Chem Soc 124:10456–10472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (NSFC, No. 21571161) and Fundamental Research Fund Project of Zhengzhou University of Light Industry (CLY-LiuZhenxin) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 281 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, H., Gao, Y. et al. Carrier synergistic effect of iron based catalysts for CO hydrogenation to lower olefins. Reac Kinet Mech Cat 137, 879–896 (2024). https://doi.org/10.1007/s11144-023-02555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02555-0

Keywords

Navigation