Skip to main content
Log in

Transformation of syngas to light hydrocarbons over bifunctional CuO–ZnO/SAPO-34 catalysts: the effect of preparation methods

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Two series of bifunctional catalysts CuO–ZnO/SAPO-34 were prepared by isometric impregnation and milling calcination. The catalyst samples with different composition ratios have been investigated in the direct transformation of syngas to light hydrocarbons. Furthermore, all the samples were characterized by SEM, XRD, BET, H2-TPR and NH3-TPD techniques. The catalytic reactions were conducted with a feeding gas mixture of CO and H2 at 320 °C and 3.0 MPa. The results indicate that the preparation methods have significant effect on the catalysts performance. Though both series of catalysts could realize the direct transformation and the catalysts prepared by the milling calcination method facilitated a little more syngas to convert, the catalysts prepared by the impregnation method led to higher light hydrocarbons selectivity and less unexpected byproduct like CO2, since these serious catalysts displayed a smaller amount of metallic solid solution, a stronger interaction between the loaded metallic particles and supportive zeolites, more appropriate acidity strength as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujimoto K, Kudo Y, Tominaga H (1984) J Catal 87:136–143

    Article  CAS  Google Scholar 

  2. Fujimoto K, Saima H, Tominaga H (1988) Ind Eng Chem Res 27:920–926

    Article  CAS  Google Scholar 

  3. Tan YS, Fujiwara M, Ando H, Xu Q, Souma Y (1999) Ind Eng Chem Res 38:3225–3229

    Article  CAS  Google Scholar 

  4. Zhang QW, Li XH, Asami K, Asaoka S, Fujimoto K (2004) Fuel Process Technol 85:1139–1150

    Article  CAS  Google Scholar 

  5. Yang GH, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y (2010) J Am Chem Soc 132:29–36

    Google Scholar 

  6. Park JW, Lee JY, Kim KS, Hong SB, Seo G (2008) Appl Catal A 339:36–44

    Article  CAS  Google Scholar 

  7. Wang PF, Lv AL, Hu J, Xu JA, Lu GZ (2012) Microporous Mesoporous Mater 152:178–184

    Article  CAS  Google Scholar 

  8. Iglesia E (2008) Appl Catal A 161:59–78

    Article  Google Scholar 

  9. Mark E (2002) Catal Today 71:227–241

    Article  Google Scholar 

  10. Zheng XM, Fei JH, Hou ZY (2001) Chin J Chem 19:67–72

    Article  CAS  Google Scholar 

  11. Sartipi S, Parashara K, Valero-Romero MJ, Santos VP, Linden B, Makkee M, Kapteijn F, Gascon J (2013) J Catal 305:179–190

    Article  CAS  Google Scholar 

  12. Salmasi M, Fatemi S, Najafabadi AT (2011) J Ind Eng Chem 17:755–761

    Article  CAS  Google Scholar 

  13. Wei YX, Zhang DZ, Liu ZM, Su BL (2012) Chin J Catal 33:11–21

    Article  CAS  Google Scholar 

  14. Tan YS, Xie HJ, Cui HT, Han YZ, Zhong B (2005) Catal Today 104:25–29

    Article  CAS  Google Scholar 

  15. Li CM, Liu JM, Gao W, Zhao YF, Wei M (2013) Catal Lett 143:1247–1254

    Article  CAS  Google Scholar 

  16. Nie RF, Lei H, Pan SY, Wang LN, Fei JH, Hou ZY (2012) Fuel 96:419–425

    Article  CAS  Google Scholar 

  17. Jin DF, Zhu B, Hou ZY, Fei JH, Lou H, Zheng XM (2007) Fuel 86:2707–2713

    Article  CAS  Google Scholar 

  18. Simard F, Sedran UA, Sepulveda J, Figoli NS, Lasa HI (1995) Appl Catal A 125:81–98

    Article  CAS  Google Scholar 

  19. Hou ZY, Fei JH, Qi GX, Zheng XM (2001) Indian J Chem A 40:406–409

    Google Scholar 

  20. Wilson S, Barger P (1999) Microporous Mesoporous Mater 29:117–126

    Article  CAS  Google Scholar 

  21. Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137–8138

    Article  CAS  Google Scholar 

  22. Fang DR, Liu ZM, Yang Y, Zhang MH, Lin JT (2005) Petrochem Technol 34:1032–1036

    CAS  Google Scholar 

  23. Venugopal A, Palgunadi J, Deog JK, Joo OS, Shin CH (2009) J Mol Catal A 302:20–27

    Article  CAS  Google Scholar 

  24. García-Trenco A, Vidal-Moya A, Martínez A (2012) Catal Today 179:43–51

    Article  Google Scholar 

  25. Agrell J, Boutonnet M, Melián-Cabrera I, Fierro JLG (2003) Appl Catal A 253:201–211

    Article  CAS  Google Scholar 

  26. Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) J Catal 219:389–403

    Article  CAS  Google Scholar 

  27. Flores JH, Pais da Silva MI (2008) Colloids Surf A 322:113–123

    Article  CAS  Google Scholar 

  28. Mi WL, Sun DJ, Gong J, Su QQ, Gong DM (2010) J Univ Sci Technol Beijing 32:224–229

    CAS  Google Scholar 

  29. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333–338

    Article  CAS  Google Scholar 

  30. Fujiwara M, Kieffer R, Ando H, Souma Y (1995) Appl Catal A 121:113–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from National Natural Science Foundation of China (21376209) and Zhejiang Provincial Natural Science Foundation (LZ13B060004) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-guo Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xu, Y., Cheng, Dg. et al. Transformation of syngas to light hydrocarbons over bifunctional CuO–ZnO/SAPO-34 catalysts: the effect of preparation methods. Reac Kinet Mech Cat 112, 489–497 (2014). https://doi.org/10.1007/s11144-014-0707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0707-1

Keywords

Navigation