Skip to main content
Log in

Computational studies on CuAAC reaction mechanism with [CuX(PPh3)]; X = I, Br, Cl for the synthesis of 4- and 5-halo-1,2,3-triazoles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A complementary catalytic system was investigated for the [3 + 2] cycloaddition of azides and halo-alkynes. These are based on three copper complexes with [CuX (PPh3)]; X = I, Br, Cl, which are active at low metal loadings (the PPh3 system). The computational MN12-L approach showed acceptable results with levels of Def2-TZVPfor Cu and Def2-SVP for other elements. In general, all the computational results indicate that the cycloaddition reaction favors the formation of the observed 1,4-regioisomer (5-halo-triazoles) through a direct π-activation mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Scheme 5

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  2. Duan X, Zheng N, Li M, Sun X, Lin Z, Qiu P, Song W (2021) Remote ether groups-directed regioselective and chemoselective cycloaddition of azides and alkynes. Chin Chem Lett 32(12):4019–4023

    Article  CAS  Google Scholar 

  3. Kowalski K (2023) A brief survey on the application of metal-catalyzed azide–alkyne cycloaddition reactions to the synthesis of ferrocenyl-x-1, 2, 3-triazolyl-R (x = none or a linker and R= organic entity) compounds with anticancer activity. Coord Chem Rev 479:214996

    Article  CAS  Google Scholar 

  4. Kumar V, Lal K, Tittal RK (2023) The fate of heterogeneous catalysis & click chemistry for 1, 2, 3-triazoles: nobel prize in chemistry 2022. Catal Commun 176:106629

    Article  CAS  Google Scholar 

  5. Kalra P, Kaur R, Singh G, Singh H, Singh G, Kaur G, Singh J (2021) Metals as “click” catalysts for alkyne-azide cycloaddition reactions: an overview. J Organomet Chem 944:121846

    Article  CAS  Google Scholar 

  6. Huisgen R (1989) Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl Chem 61(4):613–628

    Article  CAS  Google Scholar 

  7. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114(14):2708–2711

    Article  Google Scholar 

  8. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  PubMed  Google Scholar 

  9. Meldal M, Tornøe CW (2008) Cu-catalyzed azide− alkyne cycloaddition. Chem Rev 108(8):2952–3015

    Article  CAS  PubMed  Google Scholar 

  10. Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chem Soc Rev 39(4):1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasolofonjatovo E, Theeramunkong S, Bouriaud A, Kolodych S, Chaumontet M, Taran F (2013) Iridium-catalyzed cycloaddition of azides and 1-bromoalkynes at room temperature. Org Lett 15(18):4698–4701

    Article  CAS  PubMed  Google Scholar 

  12. Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM (2014) Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles in water. RSC Adv 4(20):10001–10012

    Article  CAS  Google Scholar 

  13. Connell TU, Schieber C, Silvestri IP, White JM, Williams SJ, Donnelly PS (2014) Copper and silver complexes of tris (triazole) amine and tris (benzimidazole) amine ligands: evidence that catalysis of an azide-alkyne cycloaddition (“click”) reaction by a silver tris (triazole) amine complex arises from copper impurities. Inorg Chem 53(13):6503–6511

    Article  CAS  PubMed  Google Scholar 

  14. Boominathan M, Pugazhenthiran N, Nagaraj M, Muthusubramanian S, Murugesan S, Bhuvanesh N (2013) Nanoporous titania-supported gold nanoparticle-catalyzed green synthesis of 1, 2, 3-triazoles in aqueous medium. ACS Sustain Chem Eng 1(11):1405–1411

    Article  CAS  Google Scholar 

  15. Smith CD, Greaney MF (2013) Zinc mediated azide–alkyne ligation to 1, 5-and 1, 4, 5-substituted 1, 2, 3-triazoles. Org Lett 15(18):4826–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong L, Lin W, Zhang F, Liu R, Zhou X (2013) Ln [N (SiMe 3) 2] 3-catalyzed cycloaddition of terminal alkynes to azides leading to 1, 5-disubstituted 1, 2, 3-triazoles: new mechanistic features. Chem Commun 49(49):5589–5591

    Article  CAS  Google Scholar 

  17. Boren BC, Narayan S, Rasmussen LK, Zhang Li, Zhao H, Lin Z, Jia G, Fokin VV (2008) Ruthenium-catalyzed azide—alkyne cycloaddition: scope and mechanism. J Am Chem Soc 130(28):8923–8930

    Article  CAS  PubMed  Google Scholar 

  18. Egbert JD, Cazin CS, Nolan SP (2013) Copper N-heterocyclic carbene complexes in catalysis. Catal Sci Technol 3(4):912–926

    Article  CAS  Google Scholar 

  19. Ahlquist M, Fokin VV (2007) Enhanced reactivity of dinuclear copper (I) acetylides in dipolar cycloadditions. Organometallics 26(18):4389–4391

    Article  CAS  Google Scholar 

  20. Straub BF (2007) µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses. Chem Commun 37:3868–3870

    Article  Google Scholar 

  21. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127(1):210–216

    Article  CAS  PubMed  Google Scholar 

  22. Özen C, Tüzün NŞ (2012) The mechanism of copper-catalyzed azide–alkyne cycloaddition reaction: a quantum mechanical investigation. J Mol Graph Model 34:101–107

    Article  PubMed  Google Scholar 

  23. Cantillo D, Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (2011) Assessing the whole range of CuAAC mechanisms by DFT calculations—on the intermediacy of copper acetylides. Org Biomol Chem 9(8):2952–2958

    Article  CAS  PubMed  Google Scholar 

  24. Calvo-Losada S, Pino MS, Quirante JJ (2014) On the regioselectivity of the mononuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC). A quantum chemical topological study. J Mol Model 20(4):1–7

    Article  CAS  Google Scholar 

  25. Calvo-Losada S, Pino-González MS, Quirante JJ (2015) Rationalizing the catalytic activity of copper in the cycloaddition of azide and alkynes (CuAAC) with the topology of ∇ 2ρ (r) and ∇∇ 2ρ (r). J Phys Chem B 119(4):1243–1258

    Article  CAS  PubMed  Google Scholar 

  26. Straub BF, Bessel M, Berg R (2011) Dicopper catalysts for the azide alkyne cycloaddition: a mechanistic DFT study. Modeling of molecular properties. Wiley, New Jersey, pp 207–214

    Chapter  Google Scholar 

  27. Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D (2016) Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord Chem Rev 316:1–20

    Article  CAS  Google Scholar 

  28. Lahann J (ed) (2009) Click chemistry for biotechnology and materials science. Wiley, New Jersey

    Google Scholar 

  29. Kuijpers BH, Dijkmans GC, Groothuys S, Quaedflieg PJ, Blaauw RH, van Delft FL, Rutjes FP (2005) Copper (I)-mediated synthesis of trisubstituted 1, 2, 3-triazoles. Synlett 2005(20):3059–3062

    Google Scholar 

  30. Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Copper (I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew Chem 121(43):8162–8165

    Article  Google Scholar 

  31. Lal S, Rzepa HS, Diez-Gonzalez S (2014) Catalytic and computational studies of N-heterocyclic carbene or phosphine-containing copper (I) complexes for the synthesis of 5-iodo-1, 2, 3-triazoles. ACS Catal 4(7):2274–2287

    Article  CAS  Google Scholar 

  32. Badawi MAAH, Khairbek AA, Thomas R (2023) Computational studies of the CuAAC reaction mechanism with diimine and phosphorus ligands for the synthesis of 1, 4-disubstituted 1, 2, 3-triazoles. New J Chem 47(8):3683–3691

    Article  CAS  Google Scholar 

  33. Khairbek AA, Badawi MAAH (2023) Mechanism of Ag (I)-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation. React Kinet Mech Catal 136(1):69–81

    Article  CAS  Google Scholar 

  34. Badawi M (2023) Mechanism of copper (I)-catalyzed cycloaddition of azides to terminal alkynes: a quantum mechanical investigation. Tishreen Univ J Basic Sci Ser 45(1):57–69

    Google Scholar 

  35. Badawi MAAH (2022) Mechanism of diethylamine/DBU-catalyzed cycloaddition of azides to unsaturated aldehydes: a quantum mechanical investigation. Comput Theor Chem 1209:113593

    Article  CAS  Google Scholar 

  36. Al-Hakim Badawi MA, Al-Zaben MI, Thomas R (2023) DFT studies on mechanism of organocatalytic metal-free click 32CA reaction for synthesis of NH-1, 2, 3-triazoles. Catal Lett. https://doi.org/10.1007/s10562-023-04374-3

    Article  Google Scholar 

  37. Rajimon KJ, Elangovan N, Khairbek AA, Thomas R (2023) Schiff bases from chlorine substituted anilines and salicylaldehyde: synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J Mol Liq 370:121055

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016, GaussView 5.0., Wallingford, E.U.A. https://gaussian.com/citation/

  39. Peverati R, Truhlar DG (2012) An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Phys Chem Chem Phys 14(38):13171–13174

    Article  CAS  PubMed  Google Scholar 

  40. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133(13):134105

    Article  PubMed  Google Scholar 

  41. Frau J, Glossman-Mitnik D (2018) Conceptual DFT study of the local chemical reactivity of the dilysyldipyrrolones A and B intermediate melanoidins. Theoret Chem Acc 137(5):1–10

    Article  CAS  Google Scholar 

  42. Peintinger MF, Oliveira DV, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34(6):451–459

    Article  CAS  PubMed  Google Scholar 

  43. Sun Y, Hu L, Chen H (2015) Comparative assessment of DFT performances in Ru-and Rh-promoted σ-bond activations. J Chem Theory Comput 11(4):1428–1438

    Article  CAS  PubMed  Google Scholar 

  44. Silva PJ, Bernardo CE (2018) Influence of alkyne and azide substituents on the choice of the reaction mechanism of the Cu+-catalyzed addition of azides to iodoalkynes. J Phys Chem A 122(37):7497–7507

    Article  CAS  PubMed  Google Scholar 

  45. Bickelhaupt FM, Houk KN (2017) Analyzing reaction rates with the distortion/interaction-activation strain model. Angew Chem Int Ed 56(34):10070–10086

    Article  CAS  Google Scholar 

  46. Oakdale JS, Sit RK, Fokin VV (2014) Ruthenium-catalyzed cycloadditions of 1-haloalkynes with nitrile oxides and organic azides: synthesis of 4-haloisoxazoles and 5-halotriazoles. Chem A Eur J 20(35):11101–11110

    Article  CAS  Google Scholar 

  47. Arenas JL, Crousse B (2021) An overview of 4-and 5-halo-1, 2, 3-triazoles from cycloaddition reactions. Eur J Org Chem 2021(18):2665–2679

    Article  CAS  Google Scholar 

  48. Li L, Li Y, Li R, Zhu A, Zhang G (2011) A new synthetic protocol for one-pot preparations of 5-halo-1, 4-disubstituted-1, 2, 3-triazoles. Aust J Chem 64(10):1383–1389

    Article  CAS  Google Scholar 

  49. Wang B, Zhang J, Wang X, Liu N, Chen W, Hu Y (2013) Tandem reaction of 1-copper (I) alkynes for the synthesis of 1, 4, 5-trisubstituted 5-chloro-1, 2, 3-triazoles. J Org Chem 78(20):10519–10523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjith Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairbek, A.A., Alzahrani, A.Y., Badawi, M.A.AH. et al. Computational studies on CuAAC reaction mechanism with [CuX(PPh3)]; X = I, Br, Cl for the synthesis of 4- and 5-halo-1,2,3-triazoles. Reac Kinet Mech Cat 137, 777–790 (2024). https://doi.org/10.1007/s11144-023-02548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02548-z

Keywords

Navigation