Skip to main content
Log in

On the regioselectivity of the mononuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC). A quantum chemical topological study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

New density functional theory (DFT) calculations show that the nature of the mechanism for the classical copper-catalyzed cycloaddition of azide to terminal alkynes—widely known as the CuAAC reaction—also depends on the ligands attached to Cu(I). Further, the topological evolution of the charge density, ρ (r), the laplacian of ρ (r), ∇2ρ(r), and its gradient field along the reaction coordinate shed light on the regioselectivity of the process. The performance of most suitable functionals for DFT calculations in this kind of system was tested.

Contour map of ∇2ρ(r) for the TS1 point of the 1,4-CuAAC reaction path (green lines denoted regions of ∇2ρ(r) >0, and black, ∇2ρ(r) <0) computed at LC-wPBE(PCM)/6-311++G(2d,2p)/6-311++G(d,p). The chosen reference plane for the line plot was N6Cu1C2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302–1315

    Article  CAS  Google Scholar 

  2. Tornøe CW, Meldal M (2002) J Org Chem 67:3057–3064

    Article  CAS  Google Scholar 

  3. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  4. Meldal M, Tornøe CW (2008) Chem Rev 108:2952–2301

    Article  CAS  Google Scholar 

  5. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Article  CAS  Google Scholar 

  6. Hein JE, Tripo JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem Int Ed 48:8018–8021

    Article  CAS  Google Scholar 

  7. Spiteri C, Moses JE (2010) Angew Chem Int Ed 49:31–33

    Article  CAS  Google Scholar 

  8. Kuang GC, Guha PM, Brotherton WS, Simmons JT, Stankee LA, Nguyen BT, Clark RJ, Zhu L (2011) J Am Chem Soc 133:13984–14001

    Article  CAS  Google Scholar 

  9. Ji P, Atherton JH, Page MI (2012) Org Biomol Chem 10:7965–7969

    Article  CAS  Google Scholar 

  10. Chiappe C, Mennucci B, Pomelli CS, Sanzonea A, Marra A (2010) Phys Chem Chem Phys 12:1958–1962

    Article  CAS  Google Scholar 

  11. Rodionov VO, Fokin VV, Finn MG (2005) Angew Chem Int Ed 44:2211–2215

    Article  CAS  Google Scholar 

  12. Diéz-González S (2011) Catal Sci Technol 1:166–178

    Article  CAS  Google Scholar 

  13. Straub BF (2007) Chem Commun 3868–3870

  14. Ozen C, Tüzün CNS (2012) J Mol Graphics Model 34:101–107

    Article  CAS  Google Scholar 

  15. Worrell BT, Malik JA, Fokin VV (2013) Science 340:457–460

    Article  CAS  Google Scholar 

  16. Pino-González MS, Assiego C, Oña N (2008) Tetrahedron: Asymmetry 19:932–937

    Article  CAS  Google Scholar 

  17. Calvo-Losada S, Quirante JJ (2008) J PhyS Chem A 112:8164–8178

    Article  CAS  Google Scholar 

  18. Calvo-Losada S (2011) PhD Thesis. University of Málaga, Málaga

    Google Scholar 

  19. Becke BVD (1988) Phys Rev B 38:3098–3100

    Article  CAS  Google Scholar 

  20. Becke BVD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  22. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  24. Steinmann SN, Piemontesi C, Delachat A, Corminboeuf C (2012) J Chem Theory Comput 8:1629–1640

    Article  CAS  Google Scholar 

  25. Gaussian 09 Revision D01, G09W, Revision A02 (2009) Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R; Normand J, Raghavachar K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J Gaussian, Inc, Wallingford CT

  26. Dennington RD II, Keith TA, Millam J (2009) GaussView 508, Gaussian, Inc, Wallingford CT

  27. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  28. Hratchian P, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  29. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  30. AIM2000 v2 Biegler-König F, Schönbohm J (2002) J Comp Chem 23:1489–1494

    Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  32. Popelier PLA (2000) Coord Chem Rev 197:169–189

    Article  CAS  Google Scholar 

  33. Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633–662

    Article  CAS  Google Scholar 

  34. Macchi P, Sironi A (2007) Interactions involving metals—from “chemical categories” to QTAIM, and backwards. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

    Google Scholar 

  35. Popelier PLA, Burke J, Malcolm NOJ (2003) Int J Quant Chem 82:326–336

    Google Scholar 

  36. Pearson RG (1999) J Chem Ed 76:267--275

    Google Scholar 

  37. Bollobás B (1998) Modern Graph Theory. Springer, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Joaquín Quirante.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo-Losada, S., Pino, M.S. & Quirante, J.J. On the regioselectivity of the mononuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC). A quantum chemical topological study. J Mol Model 20, 2187 (2014). https://doi.org/10.1007/s00894-014-2187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2187-7

Keywords

Navigation