Skip to main content
Log in

Preparation of CuFe2O4/In2S3 composite for photocatalytic degradation of tetracycline under visible light irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The CuFe2O4/In2S3 composite was prepared by a simple mechanical grinding process and used for the photocatalytic degradation of tetracycline (TC) under visible light irradiation. The results showed that the photocatalytic degradation activity for tetracycline on the CuFe2O4/In2S3 composite photocatalyst with a mass ratio of 1:3 was 95.2%, which was higher than that of 12 and 63% on pure CuFe2O4 and In2S3 alone, as well as 89% on CuFe2O4/In2S3(1:1) and 79% on CuFe2O4/In2S3(3:1). Tetracycline photodegradation on CuFe2O4/In2S3 was a first-order reaction, and the rate constant of the tetracycline degradation reaction under visible light irradiation was 0.02162 min−1, which was 38 and 3.1 times higher than that of CuFe2O4 and In2S3 alone, respectively. This characterization results showed that CuFe2O4/In2S3(1:3) composites showed the high photodegradation efficiency and the highest photogenerated carrier separation efficiency. In addition, on the optimal reaction condition, an optimal photodegradation of 95.2% for tetracycline would achieved. The stable construction of the CuFe2O4/In2S3 heterojunction and the narrow band gap of CuFe2O4 or In2S3 enhance the light absorption capacity of the catalyst. The mechanism study shows that CuFe2O4 and In2S3 are excited by visible light to produce electrons, which transfer to the conduction band of CuFe2O4 and In2S3. Subsequently, the separation and transfer of photogenerated holes and photogenerated electrons are effectively improved by the Z-scheme photogenerated carrier transfer mechanism. The photogenerated electrons can reduce O2 to produce ·O2, which together with h+ on the valence band becomes the main oxidation active species in the reaction system, and efficient oxidative degradation of tetracycline can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang P, Liu S, Wang X, Cong Q, Lu J (2021) Assessment of the efficiency of synergistic photocatalysis on penicillin G biodegradation by whole cell Paracoccus sp. J Biol Eng 15(1):1754. https://doi.org/10.1186/s13036-021-00275-4

    Article  Google Scholar 

  2. Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172. https://doi.org/10.1016/j.envint.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  3. Suresh D, Goh PS, Ismail AF, Wong TW (2023) Insights into biofouling in reverse osmosis membrane: A comprehensive review on techniques for biofouling assay. J Environ Chem Eng 11(3):110317. https://doi.org/10.1016/j.jece.2023.110317

    Article  CAS  Google Scholar 

  4. Liu J, Lin H, Dong Y, He Y, Liu W, Shi Y (2021) The effective adsorption of tetracycline onto MoS2@Zeolite-5: Adsorption behavior and interfacial mechanism. J Environ Chem Eng 9(5):105912. https://doi.org/10.1016/j.jece.2021.105912

    Article  CAS  Google Scholar 

  5. Sam SP, Tan HT, Sudesh K, Adnan R, Ting ASY, Ng SL (2021) Phenol and p-nitrophenol biodegradations by acclimated activated sludge: Influence of operational conditions on biodegradation kinetics and responding microbial communities. J Environ Chem Eng 9(4):105420. https://doi.org/10.1016/j.jece.2021.105420

    Article  CAS  Google Scholar 

  6. Murillo-Sierra JC, Hernández-Ramírez A, Zhao Z-Y, Martínez-Hernández A, Gracia-Pinilla MA (2021) Construction of direct Z-scheme WO3/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic. J Environ Chem Eng 9(2):105111. https://doi.org/10.1016/j.jece.2021.105111

    Article  CAS  Google Scholar 

  7. Abdurahman MH, Abdullah AZ, Shoparwe NF (2021) A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem Eng J 413:1385–8947. https://doi.org/10.1016/j.cej.2020.127412

    Article  CAS  Google Scholar 

  8. Li S, Wang C, Liu Y, Cai M, Wang Y, Zhang H, Guo Y, Zhao W, Wang Z, Chen X (2022) Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem Eng J 429:1385–8947. https://doi.org/10.1016/j.cej.2021.132519

    Article  CAS  Google Scholar 

  9. Qin K, Zhao Q, Yu H, Xia X, Li J, He S, Wei L, An T (2021) A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ Res 199:0013–9351. https://doi.org/10.1016/j.envres.2021.111360

    Article  CAS  Google Scholar 

  10. Chen YF, Duan X, Li J, Liu W, Liu Q (2021) Hydrothermal synthesis of Ca doped β-In2S3 for effective dyes degradation. Adv Powder Technol 32(6):1881–1890. https://doi.org/10.1016/j.apt.2021.03.042

    Article  CAS  Google Scholar 

  11. Sharma MD, Mahala C, Basu M (2020) Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids. ACS Appl Nano Mater 3(11):11638–11649. https://doi.org/10.1021/acsanm.0c02876

    Article  CAS  Google Scholar 

  12. Singh J, Soni RK (2020) Controlled synthesis of CuO decorated defect enriched ZnO nanoflakes for improved sunlight-induced photocatalytic degradation of organic pollutants. Appl Surf Sci 521:146420. https://doi.org/10.1016/j.apsusc.2020.146420

    Article  CAS  Google Scholar 

  13. Chen HF, Yang J, Chen HQ, Jin YH, Guo JJ, Chen FJ, Zhou NY (2019) In2S3-TiO2 heterojunction/electrospinning fiber composites for efficient photocatalytic hydrogen production. Optoelectron Adv Mater 13(3–4):262–266

    CAS  Google Scholar 

  14. Yang S, Xu CY, Zhang BY, Yang L, Hu SP, Zhen L (2017) Ca(II) doped β-In2S3 hierarchical structures for photocatalytic hydrogen generation and organic dye degradation under visible light irradiation. J Colloid Interface Sci 491:230–237. https://doi.org/10.1016/j.jcis.2016.12.028

    Article  CAS  PubMed  Google Scholar 

  15. Jinna F, Zhiquan Y, Shan X, Niu T, Zhang D (2018) Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 212:114–123. https://doi.org/10.1016/j.chemosphere.2018.08.070

    Article  CAS  Google Scholar 

  16. Singh J, Soni RK (2021) Fabrication of nanostructured In2S3 thin film with broad optical absorption for improved sunlight mediated photocatalysis application. Opt Mater 122:111748. https://doi.org/10.1016/j.chemosphere.2018.08.070

    Article  CAS  Google Scholar 

  17. Chen Q, Wang X, Liu W, Luo T, Jin Z, Zhang Y, Huang J, Zhang H, Wang J, Peng F (2022) Rapid photocatalytic reduction of Cr(VI) with high concentration in wastewater by In2S3-ZnIn2S4 heterostructure hierarchical microtubes under visible light. J Solid State Chem 306:122721. https://doi.org/10.1016/j.jssc.2021.122721

    Article  CAS  Google Scholar 

  18. Long M, Li D, Li H, Ma X, Zhao Q, Wen Q, Song F (2022) Synergetic effect of photocatalysis and peroxymonosulfate activated by MFe2O4 (M = Co, Mn, or Zn) for enhanced photocatalytic activity under visible light irradiation. RSC Adv 12(32):20946–20955. https://doi.org/10.1039/d2ra03558h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jing PP, Li JN, Pan LN, Wang JB, Sun XJ, Liu QF (2015) Efficient photocatalytic degradation of acid fuchsin in aqueous solution using separate porous tetragonal-CuFe2O4 nanotubes. J Hazard Mater 284:163–170. https://doi.org/10.1016/j.jhazmat.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  20. Atacan K, Guy N, Ozacar M (2021) Design and synthesis of magnetically separable CuFe2O4/MoS2 p-n heterojunction for photocatalytic efficiency of Rhodamine B degradation. Colloid Interface Sci Commun 40:2215–2382. https://doi.org/10.1016/j.colcom.2020.100359

    Article  CAS  Google Scholar 

  21. Sonu SS, Dutta V, Raizada P, Singh A, Singh P, Ahamad T, Van Quyet L, Van-Huy N (2022) Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater. Appl Nanosci 13:3693–3707. https://doi.org/10.1007/s13204-022-02500-y

    Article  CAS  Google Scholar 

  22. Zhang E, Wang L, Zhang B, Xie Y, Wang G (2020) Enhanced photocatalytic performance of polyvinylidene fluoride membrane by doped CuFe2O4 nanocrystals for water treatment. J Sol-Gel Sci Technol 93(2):452–461. https://doi.org/10.1007/s10971-019-05209-7

    Article  CAS  Google Scholar 

  23. Oliveira TP, Rodrigues SF, Marques GN, Viana Costa RC, Garçone Lopes CG, Aranas C, Rojas A, Gomes Rangel JH, Oliveira MM (2022) Synthesis, characterization, and photocatalytic investigation of CuFe2O4 for the degradation of dyes under visible light. Catalysts 12(6):623. https://doi.org/10.3390/catal12060623

    Article  CAS  Google Scholar 

  24. Sun D, Yang J, Chen F, Chen Z, Lv K (2022) Hollow nanospheres organized by ultra-small CuFe2O4/C subunits with efficient photo-fenton-like performance for antibiotic degradation and Cr(VI) reduction. Catalysts 12(7):687. https://doi.org/10.3390/catal12070687

    Article  CAS  Google Scholar 

  25. Guo XJ, Wang KB, Li D, Qin JB (2017) Heterogeneous photoFenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Surf Sci 420:792–801. https://doi.org/10.1016/j.apsusc.2017.05.178

    Article  CAS  Google Scholar 

  26. Rahmayeni AN, Stiadi Y, Putri YE, Zulhadjri, (2022) Magnetic particles nanorod of ZnO/CuFe2O4 prepared by green synthesized approach: structural, optical and magnetic properties, and photocatalytic activity. Mater Res-Ibero-Am J 25:1439–1516. https://doi.org/10.1590/1980-5373-mr-2021-0164

    Article  CAS  Google Scholar 

  27. Zhao Y, Lin C, Bi H, Liu Y, Yan Q (2017) Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl Surf Sci 392:701–707. https://doi.org/10.1016/j.apsusc.2016.09.099

    Article  CAS  Google Scholar 

  28. Naghikhani R, Nabiyouni G, Ghanbari D (2018) Simple and green synthesis of CuFe2O4-CuO nanocomposite using some natural extracts: photodegradation and magnetic study of nanoparticles. J Mater Sci-Mater El 29(6):4689–4703. https://doi.org/10.1007/s10854-017-8421-1

    Article  CAS  Google Scholar 

  29. Yu Y-Y, Zhang H-Q (2016) Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin J Struct Chem 35(3):472–480. https://doi.org/10.14102/j.cnki.0254-5861.2011-1041

    Article  CAS  Google Scholar 

  30. Kumar A, Rout L, Achary LSK, Mohanty SK, Dash P (2017) A combustion synthesis route for magnetically separable graphene oxide-CuFe2O4-ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity. New J Chem 41(19):10568–10583. https://doi.org/10.1039/c7nj02070h

    Article  CAS  Google Scholar 

  31. Ai CL, Wang Q, Lei YJ, Shao XW (2016) Solar photocatalytic activity of indium sulfide nanocrystal and degradation of the tetracycline by In2S3. Desalin Water Treat 57(45):21428–21436. https://doi.org/10.1080/19443994.2015.1119740

    Article  CAS  Google Scholar 

  32. Huang C, Hong Y, Yan X, Xiao L, Huang K, Gu W, Liu K, Shi W (2016) Carbon quantum dot decorated hollow In2S3 microspheres with efficient visible-light-driven photocatalytic activities. RSC Adv 6(46):40137–40146. https://doi.org/10.1039/c6ra01348a

    Article  CAS  Google Scholar 

  33. Kharat PB, Somvanshi SB, Somwanshi SB, Mopari AM (2021) Investigation of super-capacitive properties of nanocrystalline copper-zinc (Cu0.5Zn0.5Fe2O4) ferrite nanoparticles. Macromol Symp 400(1):2100162. https://doi.org/10.1002/masy.202100162

    Article  CAS  Google Scholar 

  34. Yan T, Wu T, Zhang Y, Sun M, Wang X, Wei Q, Du B (2017) Fabrication of In2S3/Zn2GeO4 composite photocatalyst for degradation of acetaminophen under visible light. J Colloid Interf Sci 506:197–206. https://doi.org/10.1016/j.jcis.2017.06.079

    Article  CAS  Google Scholar 

  35. Fu X, Wang X, Chen Z, Zhang Z, Li Z, Leung DYC, Wu L, Fu X (2010) Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl Catal B-Environ 95(3):393–399. https://doi.org/10.1016/j.apcatb.2010.01.018

    Article  CAS  Google Scholar 

  36. Wang H, Yuan X, Wu Y, Zeng G, Dong H, Chen X, Leng L, Wu Z, Peng L (2016) In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B-Environ 186:19–29. https://doi.org/10.1016/j.apcatb.2015.12.041

    Article  CAS  Google Scholar 

  37. Zhang X, Li X, Shao C, Li J, Zhang M, Zhang P, Wang K, Lu N, Liu Y (2013) One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J Hazard Mater 260:892–900. https://doi.org/10.1016/j.jhazmat.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  38. Torkamani R, Aslibeiki B, Fathi S (2023) Competition between the effect of particle size and TM-doping on photodegradation of oxytetracycline using Zn0.94M0.06O (M: Mn, Fe Co, Ni, Cu and Zn) nanoparticles. React Kinet Mech Cat 136(5):2737–2749. https://doi.org/10.1007/s11144-023-02477-x

    Article  CAS  Google Scholar 

  39. Tian L, Zhang Y, Dai L, Xin C, Li Q, Tang Y, Yu X (2023) Construction of amorphous In2S3 decorated Ta2O5-x mesocrystals for enhanced photocatalytic tetracycline degradation. Mater Lett 338:134055. https://doi.org/10.1016/j.matlet.2023.134055

    Article  CAS  Google Scholar 

  40. Hu P, Xin Y, Yao C, Miao Y (2021) In2S3/BiOI composites boost visible-light photocatalytic degradation of tetracycline hydrochloride. CrystEngComm 23(19):3488–3497. https://doi.org/10.1039/D1CE00134E

    Article  CAS  Google Scholar 

  41. Wei P, Yin S, Zhou T, Peng C, Xu X, Lu J, Liu M, Jia J, Zhang K (2021) Rational design of Z-scheme ZnFe2O4/Ag@Ag2CO3 hybrid with enhanced photocatalytic activity, stability and recovery performance for tetracycline degradation. Sep Purif Technol 266:118544. https://doi.org/10.1016/j.seppur.2021.118544

    Article  CAS  Google Scholar 

  42. Xu J, Luo BF, Gu W, Jian YP, Wu FL, Tang YB, Shen H (2018) Fabrication of In2S3/NaTaO3 composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New J Chem 42(7):5052–5058. https://doi.org/10.1039/c7nj05123a

    Article  CAS  Google Scholar 

  43. Luo J, Li R, Chen Y, Zhou X, Ning X, Zhan L, Ma L, Xu X, Xu L, Zhang L (2019) Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep Purif Technol 210:417–430. https://doi.org/10.1016/j.seppur.2018.08.028

    Article  CAS  Google Scholar 

  44. Ai CL, Zhou DD, Wang Q, Shao XW, Lei YJ (2015) Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Sol Energy 113:34–42. https://doi.org/10.1016/j.solener.2014.12.022

    Article  CAS  Google Scholar 

  45. Gomez-Pacheco CV, Sanchez-Polo M, Rivera-Utrilla J, Lopez-Penalver JJ (2012) Tetracycline degradation in aqueous phase by ultraviolet radiation. Chem Eng J 187:89–95. https://doi.org/10.1016/j.cej.2012.01.096

    Article  CAS  Google Scholar 

  46. Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH (2015) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol 12(2):603–616. https://doi.org/10.1007/s13762-014-0706-9

    Article  CAS  Google Scholar 

  47. Wang PH, Yap PS, Lim TT (2011) C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl Catal A-Gen 399(1–2):252–261. https://doi.org/10.1016/j.apcata.2011.04.008

    Article  CAS  Google Scholar 

  48. Arana J, Nieto JLM, Melian JAH, Rodriguez JMD, Diaz OG, Pena JP, Bergasa O, Alvarez C, Mendez J (2004) Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere 55(6):893–904. https://doi.org/10.1016/j.chemosphere.2003.11.060

    Article  CAS  PubMed  Google Scholar 

  49. Azimi S, Nezamzadeh-Ejhieh A (2015) Enhanced activity of clinoptilolite-supported hybridized PbS-CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution. J Mol Catal A-Chem 408:152–160. https://doi.org/10.1016/j.molcata.2015.07.017

    Article  CAS  Google Scholar 

  50. Liu MM, Hou LA, Yu SL, Xi BD, Zhao Y, Xia XF (2013) MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem Eng J 223:678–687. https://doi.org/10.1016/j.cej.2013.02.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pouretedal HR, Afshari B (2016) Preparation and characterization of Zr and Sn doped TiO2 nanocomposite and photocatalytic activity in degradation of tetracycline. Desalin Water Treat 57(23):10941–10947. https://doi.org/10.1080/19443994.2015.1041056

    Article  CAS  Google Scholar 

  52. Nezamzadeh-Ejhieh A, Salimi Z (2010) Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite. Appl Catal A—Gen 390(1–2):110–118. https://doi.org/10.1016/j.apcata.2010.09.038

    Article  CAS  Google Scholar 

  53. Nezamzadeh-Ejhieh A, Shirzadi A (2014) Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nanoclinoptilolite particles toward photodegradation of tetracycline. Chemosphere 107:136–144. https://doi.org/10.1016/j.chemosphere.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  54. Chen LY, Dai H, Shen YM, Bai JF (2010) Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J Alloy Compd 491(1–2):133–138. https://doi.org/10.1016/j.jallcom.2009.11.031

    Article  CAS  Google Scholar 

  55. Chu XL, Shan GQ, Chang C, Fu Y, Yue LF, Zhu LY (2016) Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Front Env Sci Eng 10(2):211–218. https://doi.org/10.1007/s11783-014-0753-y

    Article  CAS  Google Scholar 

  56. Hong YZ, Ren A, Jiang YH, He JH, Xiao LS, Shi WD (2015) Sol-gel synthesis of visible-light-driven Ni(1–x)Cu(x)Fe2O4 photocatalysts for degradation of tetracycline. Ceram Int 41(1):1477–1486. https://doi.org/10.1016/j.ceramint.2014.09.082

    Article  CAS  Google Scholar 

  57. Sun X, Wang G, Huang L, Feng H, Zhou S, Zhao R, Wang D, Li Z (2023) Microwave-assisted coprecipitation preparation of CuFe2O4 photoFenton degradation tetracycline: Characterization, efficacy, stability in complex water quality and mechanism. J Environ Chem Eng 11(1):109164. https://doi.org/10.1016/j.jece.2022.109164

    Article  CAS  Google Scholar 

  58. Zhao G, Ding J, Zhou F, Chen X, Wei L, Gao Q, Wang K, Zhao Q (2021) Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: Mechanisms and degradation pathway. Chem Eng J 405:126704. https://doi.org/10.1016/j.cej.2020.126704

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22078074, 22208065, 21938001), Guangxi Natural Science Foundation (2020GXNSFDA297007, 2022GXNSFBA035483), Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2021K009), and Special funding for ‘Guangxi Bagui Scholars’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzeng Qin.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9695 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Su, T., Luo, X. et al. Preparation of CuFe2O4/In2S3 composite for photocatalytic degradation of tetracycline under visible light irradiation. Reac Kinet Mech Cat 137, 587–606 (2024). https://doi.org/10.1007/s11144-023-02539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02539-0

Keywords

Navigation