Skip to main content
Log in

Construction of copper(I) complex immobilized on magnetic Fe3O4 nanoparticles [Fe3O4@BBI-CuBr]: a green and highly efficient nanomagnetic catalyst for three-component preparation of diaryl sulfones

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to prepare diaryl sulfones, in this paper, copper(I) complex immobilized on magnetic Fe3O4 nanoparticles [Fe3O4@BBI-CuBr] was constructed and used as a green and highly efficient nanomagnetic catalyst for the sulfonylative-Suzuki–Miyaura cross-coupling reaction of aryl iodides with arylboronic acids and DABSO (as SO2 source). The as-constructed Fe3O4@BBI-CuBr nanocatalyst were well identified by some spectroscopic techniques. Using this methodology, various diaryl sulfones were synthesized with good to excellent efficiency, the reactions were carried out in a green and mild environment, the Fe3O4@BBI-CuBr catalyst was easily separated from the reaction mixture by a magnet and reused several times. It is worth noting that the XRD, TEM and ICP-OES techniques showed that the reused catalyst still has high stability and catalytic activity after 7 times.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ghobadi M, KargarRazi M, Javahershenas R, Kazemi M (2021) Nanomagnetic reusable catalysts in organic synthesis. Synth Commun 51:647–669. https://doi.org/10.1080/00397911.2020.1819328

    Article  CAS  Google Scholar 

  2. Zheng Y, Liu Y, Guo X et al (2020) Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J Mater Sci Technol 41:117–126. https://doi.org/10.1016/j.jmst.2019.09.018

    Article  CAS  Google Scholar 

  3. ManafiKhajeh Pasha A, Raoufi S, Ghobadi M, Kazemi M (2020) Biologically active tetrazole scaffolds: catalysis in magnetic nanocomposites. Synth Commun 50:3685–3716. https://doi.org/10.1080/00397911.2020.1811872

    Article  CAS  Google Scholar 

  4. Kong L, Liu Y, Dong L et al (2020) Enhanced red luminescence in CaAl12O19: Mn4+ via doping Ga3+ for plant growth lighting. Dalt Trans 49:1947–1954. https://doi.org/10.1039/C9DT04086B

    Article  CAS  Google Scholar 

  5. Yu Q (2023) Theoretical studies of non-noble metal single-atom catalyst Ni1/MoS2: electronic structure and electrocatalytic CO2 reduction. Sci China Mater 66:1079–1088. https://doi.org/10.1007/s40843-022-2222-6

    Article  CAS  Google Scholar 

  6. Chaudhari MB, Gnanaprakasam B (2019) Recent advances in the metal-catalyzed activation of amide bonds. Chem - An Asian J 14:76–93. https://doi.org/10.1002/asia.201801317

    Article  CAS  Google Scholar 

  7. Zhang J, Zhong A, Huang G et al (2020) Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol Energy 209:316–324. https://doi.org/10.1016/j.solener.2020.08.096

    Article  CAS  Google Scholar 

  8. Kazemi M (2020) Reusable nanomagnetic catalysts in synthesis of imidazole scaffolds. Synth Commun 50:2095–2113. https://doi.org/10.1080/00397911.2020.1728334

    Article  CAS  Google Scholar 

  9. Kumar P, Tomar V, Kumar D et al (2022) Magnetically active iron oxide nanoparticles for catalysis of organic transformations: a review. Tetrahedron 106–107:132641. https://doi.org/10.1016/j.tet.2022.132641

    Article  CAS  Google Scholar 

  10. Kazemi M, Shiri L (2022) Ionic liquid immobilized on magnetic nanoparticles: A nice and efficient catalytic strategy in synthesis of heterocycles. J Synth Chem 1:1–7. https://doi.org/10.22034/jsc.2022.149201

    Article  Google Scholar 

  11. Zhang R, Miao C, Shen Z et al (2012) Magnetic nanoparticles of ferrite complex oxides: a cheap, efficient, recyclable catalyst for building the cn bond under ligand-free conditions. ChemCatChem 4:824–830. https://doi.org/10.1002/cctc.201100461

    Article  CAS  Google Scholar 

  12. Wang Z, Hu L, Zhao M et al (2022) Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: experimental and simulation. Biochar 4:28. https://doi.org/10.1007/s42773-022-00153-2

    Article  CAS  Google Scholar 

  13. Wang Z, Chen C, Liu H et al (2020) Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ. 708:135063. https://doi.org/10.1016/j.scitotenv.2019.135063

    Article  PubMed  CAS  Google Scholar 

  14. Dhameliya TM, Donga HA, Vaghela PV et al (2020) A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 10:32740–32820. https://doi.org/10.1039/D0RA02272A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. https://doi.org/10.1039/c3cs35480f

    Article  PubMed  CAS  Google Scholar 

  16. Tang T, Zhou M, Lv J et al (2022) Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surfaces B Biointerfaces 216:112538. https://doi.org/10.1016/j.colsurfb.2022.112538

    Article  PubMed  CAS  Google Scholar 

  17. Cheng T, Zhang D, Li H, Liu G (2014) Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem 16:3401–3427. https://doi.org/10.1039/C4GC00458B

    Article  CAS  Google Scholar 

  18. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532. https://doi.org/10.1039/b815548h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gupta S (2022) Sulfuric acid heterogenized on magnetic nanoparticles functionalized with glycerol catalyzed synthesis of 2, 3-dihydroquinazoline-4(1H)-ones. J Synth Chem 1:37–41. https://doi.org/10.22034/jsc.2022.149222

    Article  Google Scholar 

  20. Dharmendra D, Chundawat P, Vyas Y, Ameta C (2022) Ultrasound-assisted efficient synthesis and antimicrobial evaluation of pyrazolopyranopyrimidine derivatives using starch functionalized magnetite nanoparticles as a green biocatalyst in water. J Chem Sci 134:47. https://doi.org/10.1007/s12039-022-02040-6

    Article  CAS  Google Scholar 

  21. Ahadi N, Mobinikhaledi A, Fathehesami A, Bagheri Z (2022) Zn salen complex supported on MnCoFe2O4(MCF) magnetic nanoparticles as a catalyst in the synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (Biginelli-like reaction). Res Chem Intermed 48:2469–2488. https://doi.org/10.1007/s11164-022-04709-6

    Article  CAS  Google Scholar 

  22. Kheilkordi Z, MohammadiZiarani G, Mohajer F et al (2022) Recent advances in the application of magnetic bio-polymers as catalysts in multicomponent reactions. RSC Adv 12:12672–12701. https://doi.org/10.1039/D2RA01294D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ezzatzadeh E (2021) Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst. Asian J Nanosci Mater 4:125–136. https://doi.org/10.26655/AJNANOMAT.2021.2.3

    Article  CAS  Google Scholar 

  24. Kazemi M, Ghobadi M (2017) Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol Rev 6:549–571. https://doi.org/10.1515/ntrev-2016-0113

    Article  CAS  Google Scholar 

  25. Wang Z, Dai L, Yao J et al (2021) Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 281:130718. https://doi.org/10.1016/j.chemosphere.2021.130718

    Article  PubMed  CAS  Google Scholar 

  26. DehnoKhalaji A, Jarosova M, Machek P (2021) Facile preparation of NiFe2O4/NaCl nanocomposites by wet chemical co-precipitation. Asian J Green Chem 5:351–358. https://doi.org/10.22034/ajgc.2021.296692.1309

    Article  CAS  Google Scholar 

  27. SamadiGarjaei S, Koukabi N, NouriParouch A (2022) Nano-Fe3O4/In: a heterogeneous magnetic nanocatalyst for synthesis of tetrazole derivatives under solvent-free conditions. Inorg Nano-Metal Chem 52:1050–1058. https://doi.org/10.1080/24701556.2022.2034004

    Article  CAS  Google Scholar 

  28. Kidwai M, Jain A, Bhardwaj S (2012) Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol Divers 16:121–128. https://doi.org/10.1007/s11030-011-9336-z

    Article  PubMed  CAS  Google Scholar 

  29. Zahra Hoseini AD (2021) Another successful application of newly prepared GO-SiC3-NH3-H2PW as highly efficient nanocatalyst for fast synthesis of Tetrahydrobenzo[b]pyrans. Adv J Chem A 4:68–77. https://doi.org/10.22034/ajca.2021.259593.1228

    Article  CAS  Google Scholar 

  30. Baghernejad B, Talebi M (2021) One-pot synthesis of 1,4-dihydropyridine derivatives using nano-cerium oxide as an efficient catalyst. Asian J Green Chem 5:368–377. https://doi.org/10.22034/ajgc.2021.292321.1308

    Article  CAS  Google Scholar 

  31. Baghernejad B, Zakariayi A (2022) One-pot synthesis of oxindoles derivatives as effective antimicrobial agents by nano-magnesium aluminate as an effective aatalyst. Asian J Nanosci Mater 5:225–233. https://doi.org/10.26655/AJNANOMAT.2022.3.5

    Article  CAS  Google Scholar 

  32. Zuo W, Zuo L, Geng X et al (2023) Radical-polar crossover enabled triple cleavage of CF2Br2: a multicomponent tandem cyclization to 3-fluoropyrazoles. Org Lett 25:6062–6066. https://doi.org/10.1021/acs.orglett.3c02305

    Article  PubMed  CAS  Google Scholar 

  33. Baghernejad B, RostamiHarzevili M (2021) Nano-cerium oxide/aluminum oxide: an efficient and useful catalyst for the synthesis of tetrahydro[a]xanthenes-11-one derivatives. Chem Methodol 5:90–95. https://doi.org/10.22034/chemm.2021.119641

    Article  CAS  Google Scholar 

  34. Zhang P, Wang X, Xu Q et al (2021) enantioselective synthesis of atropisomeric biaryls by Pd-catalyzed asymmetric buchwald-hartwig amination. Angew Chemie Int Ed 60:21718–21722. https://doi.org/10.1002/anie.202108747

    Article  CAS  Google Scholar 

  35. Obaid MI, Jaafar WA (2022) Formation, characterization and thermal study of novel schiff base ligand from sulfonic acid and its complexes with Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) Type NO. Chem Methodol 6:457–462. https://doi.org/10.22034/chemm.2022.335650.1466

    Article  CAS  Google Scholar 

  36. Nazari BBL (2021) Synthesis of indeno [1,2-b] pyridine derivatives in the presence of Nano CeO2/ZnO. Eurasian Chem Commun 3:319–326. https://doi.org/10.22034/ecc.2021.277002.1145

    Article  CAS  Google Scholar 

  37. Liu Z, Fan B, Zhao J et al (2023) Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros Sci 212:110957. https://doi.org/10.1016/j.corsci.2022.110957

    Article  CAS  Google Scholar 

  38. Kritchenkov IS, Shakirova JR, Tunik SP (2019) Efficient one-pot green synthesis of tetrakis(acetonitrile)copper( <scp>i</scp> ) complex in aqueous media. RSC Adv 9:15531–15535. https://doi.org/10.1039/C8RA10564B

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Broggi J, Joubert N, Aucagne V et al (2007) Study of different copper (I) catalysts for the “Click Chemistry” approach to carbanucleosides. Nucleosides, Nucleotides Nucleic Acids 26:779–783. https://doi.org/10.1080/15257770701501492

    Article  PubMed  CAS  Google Scholar 

  40. Soleimani E, Khodaei MM, Batooie N, Samadi S (2012) Tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyzed coumarin synthesis via pechmann condensation under solvent-free condition. J Heterocycl Chem 49:409–412. https://doi.org/10.1002/jhet.814

    Article  CAS  Google Scholar 

  41. Azarifar D, Nejat-Yami R, Akrami Z et al (2012) Tetrakis(acetonitrile)copper(I) hexafluorophosphate as an efficient catalyst for the synthesis of triazolo[1,2-a]indazole-1,3,8-trione and 2Hindazolo[2,1-b]phthalazine-trione derivatives. Lett Org Chem 9:128–132. https://doi.org/10.2174/157017812800221807

    Article  CAS  Google Scholar 

  42. Helan V, Gulevich AV, Gevorgyan V (2015) Cu-catalyzed transannulation reaction of pyridotriazoles with terminal alkynes under aerobic conditions: efficient synthesis of indolizines. Chem Sci 6:1928–1931. https://doi.org/10.1039/C4SC03358B

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Deilam R, Moeinpour F, Mohseni-Shahri FS (2020) Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles. Monatshefte für Chemie - Chem Mon 151:1153–1162. https://doi.org/10.1007/s00706-020-02652-z

    Article  CAS  Google Scholar 

  44. Pandya VG, Mhaske SB (2014) Transition-metal-free C-S bond formation: a facile access to aryl sulfones from sodium sulfinates via arynes. Org Lett 16:3836–3839. https://doi.org/10.1021/ol5018646

    Article  PubMed  CAS  Google Scholar 

  45. Yao W, Lv K, Xie Z et al (2023) Catalyst-free electrochemical Sulfonylation of Organoboronic acids. J Org Chem 88:2296–2305. https://doi.org/10.1021/acs.joc.2c02690

    Article  PubMed  CAS  Google Scholar 

  46. Joseph D, Idris MA, Chen J, Lee S (2021) Recent advances in the catalytic synthesis of Arylsulfonyl compounds. ACS Catal 11:4169–4204. https://doi.org/10.1021/acscatal.0c05690

    Article  CAS  Google Scholar 

  47. Zhao F, Wu X-F (2021) Sulfonylation of bismuth reagents with sulfinates or SO2 through Bi III /Bi V intermediates. Organometallics 40:2400–2404. https://doi.org/10.1021/acs.organomet.1c00339

    Article  CAS  Google Scholar 

  48. Kim DH, Lee J, Lee A (2018) Visible-light-driven silver-catalyzed one-pot approach: a selective synthesis of diaryl sulfoxides and diaryl sulfones. Org Lett 20:764–767. https://doi.org/10.1021/acs.orglett.7b03901

    Article  PubMed  CAS  Google Scholar 

  49. Gong B, Zhu H, Yang L et al (2022) Base-promoted synthesis of diarylsulfones from sulfonyl hydrazines and diaryliodonium salts. Org Biomol Chem 20:3501–3505. https://doi.org/10.1039/D2OB00389A

    Article  PubMed  CAS  Google Scholar 

  50. Kamble RB, Chavan SS, Suryavanshi G (2019) An efficient heterogeneous copper fluorapatite (CuFAP)-catalysed oxidative synthesis of diaryl sulfone under mild ligand- and base-free conditions. New J Chem 43:1632–1636. https://doi.org/10.1039/C8NJ04845B

    Article  CAS  Google Scholar 

  51. Chawla R, Yadav LDS (2019) Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Org Biomol Chem 17:4761–4766. https://doi.org/10.1039/C9OB00864K

    Article  PubMed  CAS  Google Scholar 

  52. Reddy RJ, Kumari AH (2021) Synthesis and applications of sodium sulfinates (RSO 2 Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 11:9130–9221. https://doi.org/10.1039/D0RA09759D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Peng Y (2014) Synthesis of symmetrical diaryl sulfone by homocoupling of sodium arylsulfinate. J Chem Res 38:265–268. https://doi.org/10.3184/174751914X13946336636551

    Article  CAS  Google Scholar 

  54. Patel JJ, Morja MI, Chauhan PM, Chikhalia KH (2022) Potent biological investigation into a new class of sulfone derivatives endowed with quinolinyl–cyclopropane analogue. J Iran Chem Soc 19:1613–1629. https://doi.org/10.1007/s13738-021-02402-w

    Article  CAS  Google Scholar 

  55. Cheng Z, Sun P, Tang A et al (2019) Switchable synthesis of aryl sulfones and sulfoxides through solvent-promoted oxidation of sulfides with O2/Air. Org Lett 21:8925–8929. https://doi.org/10.1021/acs.orglett.9b03192

    Article  PubMed  CAS  Google Scholar 

  56. Umierski N, Manolikakes G (2013) Metal-free synthesis of diaryl sulfones from arylsulfinic acid salts and diaryliodonium salts. Org Lett 15:188–191. https://doi.org/10.1021/ol303248h

    Article  PubMed  CAS  Google Scholar 

  57. Gong X, Shen Z, Wang G et al (2021) Heterogeneous copper-catalyzed synthesis of diaryl sulfones. Org Biomol Chem 19:10662–10668. https://doi.org/10.1039/D1OB01830B

    Article  PubMed  CAS  Google Scholar 

  58. Kamel A, Hasan AK, Al-Khafaji AHD et al (2023) A green and efficient approach for preparation of diaryl sulfones: Fe3O4 @DABA-PA-CuBr 2 nanocomposite catalyzed one-pot three-component aryl iodides, aryl boronic acids, and DABSO (as SO2 source). Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2023.2212103

    Article  Google Scholar 

  59. KhasheiSiuki H, GhamariKargar P, Bagherzade G (2022) New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 12:3771. https://doi.org/10.1038/s41598-022-07674-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham S. Mustafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2528 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, M.H., Thabit, R., Mutlaq, M.S. et al. Construction of copper(I) complex immobilized on magnetic Fe3O4 nanoparticles [Fe3O4@BBI-CuBr]: a green and highly efficient nanomagnetic catalyst for three-component preparation of diaryl sulfones. Reac Kinet Mech Cat 137, 209–229 (2024). https://doi.org/10.1007/s11144-023-02531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02531-8

Keywords

Navigation