Skip to main content
Log in

Construction of Fe3O4@BTH-Pyr-CuCl nanocomposite as a highly active magnetically reusable catalyst for arylation of a category of heterocycles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

C–H arylation of heterocyclic compounds is a very interesting and important research field in chemistry for the formation of C–C bonds, but unfortunately, few methods have been reported for this purpose. In this attractive and highly efficient methodology, we wish to report that copper (I) chloride immobilized on magnetic nanoparticles modified with benzothiazole-pyrimidine Ligand (Fe3O4@BTH-Pyr-CuCl) is a novel and efficient magnetically recoverable catalyst for carbon–carbon bond formation through C–H arylation of a category of heterocyclic compounds by aryl iodides in the presence of KOAc in PEG under mild conditions. Under this catalytic system, A category of heterocyclic substrates including benzo[d]oxazole, benzo[d]thiazole, 1-methyl-1H-benzo[d]imidazole, 2,5-diphenyloxazole, benzofuran, 2-phenyl-1,3,4-oxadiazole and 2-phenylimidazo[1,2-a]pyridine were used as substrate and the desired products were prepared with high to excellent yields. Reusability tests revealed that the Fe3O4@BTH-Pyr-CuCl catalyst can be reused at least 7 runs without significant decrease in its catalytic efficiency. ICP-OES, VSM and SEM techniques confirmed the recovered Fe3O4@BTH-Pyr-CuCl catalyst was very stable and had high magnetic property despite the utilization for 7 runs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. A.K. Sharma, H. Joshi, A.K. Singh, RSC Adv. 10, 6452 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Zhang, N. Song, Biol. Mol. Chem. 1, 53 (2023)

    Google Scholar 

  3. V.G. Pandya, S.B. Mhaske, Org. Lett. 16, 3836 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. R. Chawla, L.D.S. Yadav, Org. Biomol. Chem. 17, 4761 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. S. Gupta, J. Synth. Chem. 1, 16 (2022)

    Google Scholar 

  6. M. Kazemi, Nanomater. Chem. 1, 1 (2023)

    Google Scholar 

  7. S. Vajar, M. Mokhtary, Polycycl. Aromat. Compd. 39, 111 (2019)

    Article  CAS  Google Scholar 

  8. R. Deilam, F. Moeinpour, F.S. Mohseni-Shahri, Monatshefte für Chem. Chem. Mon. 151, 1153 (2020)

    Article  CAS  Google Scholar 

  9. M. Ghobadi, J. Synth. Chem. 1, 84 (2022)

    Google Scholar 

  10. M. Ghobadi, M. Kargar Razi, R. Javahershenas, M. Kazemi, Synth. Commun. 51, 647 (2021)

    Article  CAS  Google Scholar 

  11. P. Ghamari Kargar, C. Len, R. Luque, Sustain. Chem. Pharm. 27, 100672 (2022)

    Article  CAS  Google Scholar 

  12. R. Arundhathi, D. Damodara, P.R. Likhar, M.L. Kantam, P. Saravanan, T. Magdaleno, S.H. Kwon, Adv. Synth. Catal. 353, 1591 (2011)

    Article  CAS  Google Scholar 

  13. L.S. Ardakani, A. Arabmarkadeh, M. Kazemi, Synth. Commun. 51, 856 (2021)

    CAS  Google Scholar 

  14. F.M. Moghaddam, M. Eslami, Appl. Organomet. Chem. 32, e4463 (2018)

    Article  Google Scholar 

  15. M.R. Abdi, Biol. Mol. Chem. 1, 1 (2023)

    Google Scholar 

  16. A.R. Sardarian, F. Mohammadi, M. Esmaeilpour, Res. Chem. Intermed. 45, 1437 (2019)

    Article  CAS  Google Scholar 

  17. R. Eisavi, A. Karimi, RSC Adv. 9, 29873 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Kazemi, Synth. Commun. 50, 1899 (2020)

    Article  CAS  Google Scholar 

  19. A. Noory Fajer, H. Khabt Aboud, H. A. Al-Bahrani, M. Kazemi, Polycycl. Aromat. Compd. 2023, 1–47.

  20. M. Lakshman, J. Synth. Chem. 1, 48 (2022)

    Google Scholar 

  21. S. Sajjadifar, M.A. Zolfigol, F. Tami, J. Chin. Chem. Soc. 66, 307 (2019)

    Article  CAS  Google Scholar 

  22. C.–H. Ma, M. Chen, Z.-W. Feng, Y. Zhang, J. Wang, Y.-Q. Jiang, B. Yu, New J. Chem. 45, 9302 (2021)

    Article  CAS  Google Scholar 

  23. M. Kamalzare, M.R. Ahghari, M. Bayat, A. Maleki, Sci. Rep. 11, 20021 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Karami, M.G. Dekamin, E. Valiey, P. Shakib, New J. Chem. 44, 13952 (2020)

    Article  CAS  Google Scholar 

  25. N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 137, 12804 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. H. Laatsch, B. Renneberg, U. Hanefeld, M. Kellner, H. Pudleiner, G. Hamprecht, H.-P. Kraemer, H. Anke, Chem. Pharm. Bull. 43, 537 (1995)

    Article  CAS  Google Scholar 

  27. T. Zarganes-Tzitzikas, P. Patil, K. Khoury, E. Herdtweck, A. Dömling, Eur. J. Org. Chem. 2015, 51 (2015)

    Article  CAS  Google Scholar 

  28. A. Elhampour, F. Nemati, Org. Prep. Proced. Int. 50, 493 (2018)

    Article  CAS  Google Scholar 

  29. M.M. Khakzad Siuki, M. Bakavoli, H. Eshghi, Appl. Organomet. Chem. 33, e4774 (2019)

    Article  Google Scholar 

  30. Y. Chen, Z.-J. Zhuo, D.-M. Cui, C. Zhang, J. Organomet. Chem. 749, 215 (2014)

    Article  CAS  Google Scholar 

  31. C.-J. Li, Can. J. Chem. 100, 98 (2022)

    Article  CAS  Google Scholar 

  32. N.G. Schmidt, E. Eger, W. Kroutil, ACS Catal. 6, 4286 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H. Zhong, B. Morandi, Nat. Synth. 1, 264 (2022)

    Article  Google Scholar 

  34. L.E. Zetzsche, A.R.H. Narayan, Nat. Rev. Chem. 4, 334 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. V. Resch, J.H. Schrittwieser, E. Siirola, W. Kroutil, Curr. Opin. Biotechnol. 22, 793 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Kim, S.H. Hong, ACS Catal. 7, 3336 (2017)

    Article  CAS  Google Scholar 

  37. D.R. Heitz, J.C. Tellis, G.A. Molander, J. Am. Chem. Soc. 138, 12715 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Bohra, M. Wang, J. Mater. Chem. A 5, 11550 (2017)

    Article  CAS  Google Scholar 

  39. I.B. Seiple, S. Su, R.A. Rodriguez, R. Gianatassio, Y. Fujiwara, A.L. Sobel, P.S. Baran, J. Am. Chem. Soc. 132, 13194 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Ren, C. Pi, X. Cui, Y. Wu, Green Chem. 24, 3017 (2022)

    Article  CAS  Google Scholar 

  41. S. Haldar, S. Mandal, C.K. Jana, Handbook of CH-Functionalization (Wiley, Hoboken, 2022), p.1

    Book  Google Scholar 

  42. C.A. Obasanjo, A.S. Zeraati, H.S. Shiran, T.N. Nguyen, S.M. Sadaf, M.G. Kibria, C.-T. Dinh, J. Mater. Chem. A 10, 20059–20070 (2022)

    Article  CAS  Google Scholar 

  43. L. Chen, A. Noory Fajer, Z. Yessimbekov, M. Kazemi, M. Mohammadi, J. Sulfur Chem. 40, 451 (2019)

    Article  CAS  Google Scholar 

  44. K. Khazenipour, F. Moeinpour, F.S. Mohseni-Shahri, J. Chin. Chem. Soc. 68, 121 (2021)

    Article  CAS  Google Scholar 

  45. Y. Fang, S. Chen, L.-Y. Chang, RSC Adv. 14, 812 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.M. Khodaei, A. Alizadeh, M. Haghipour, Res. Chem. Intermed. 45, 2727 (2019)

    Article  CAS  Google Scholar 

  47. G. Huang, H. Sun, X. Qiu, C. Jin, C. Lin, Y. Shen, J. Jiang, L. Wang, Org. Lett. 13, 5224 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. N.-N. Jia, X.-C. Tian, X.-X. Qu, X.-X. Chen, Y.-N. Cao, Y.-X. Yao, F. Gao, X.-L. Zhou, Sci. Rep. 7, 43758 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  49. P.H. Tran, A.-H. Thi Hang, RSC Adv. 8, 11127 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R.G. Kalkhambkar, K.K. Laali, Tetrahedron Lett. 53, 4212 (2012)

    Article  CAS  Google Scholar 

  51. H.T. Nguyen, T.H. Nguyen, D.D. Pham, C.T. Nguyen, P.H. Tran, Heliyon 7, e08309 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O. Yuen, C. So, W. Wong, F. Kwong, Synlett 23, 2714 (2012)

    Article  CAS  Google Scholar 

  53. Q. Tian, W. Luo, Z. Gan, D. Li, Z. Dai, H. Wang, X. Wang, J. Yuan, Molecules 24, 174 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  54. O.V. Khazipov, K.E. Shepelenko, S.B. Soliev, K.A. Nikolaeva, V.M. Chernyshev, V.P. Ananikov, ChemCatChem 14, e202201055 (2022)

    Article  CAS  Google Scholar 

  55. G. Chakraborty, R. Mondal, A.K. Guin, N.D. Paul, Org. Biomol. Chem. 19, 7217 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. J. Zhang, X. Zhao, P. Liu, P. Sun, J. Org. Chem. 84, 12596 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. A. Pal, A. Thakur, Org. Biomol. Chem. 20, 8977 (2022)

    Article  CAS  PubMed  Google Scholar 

  58. Y. Li, J. Jin, W. Qian, W. Bao, Org. Biomol. Chem. 8, 326 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. K.M. Liu, L.Y. Liao, X.F. Duan, Chem. Commun. 51, 1124 (2015)

    Article  CAS  Google Scholar 

  60. A. Moazzam, S.M. Farid, N. Khaleghi, N. Alizadeh, M. Mahdavi, New J. Chem. 46, 10814 (2022)

    Article  CAS  Google Scholar 

  61. M.-A. Hiebel, Y. Fall, M.-C. Scherrmann, S. Berteina-Raboin, Eur. J. Org. Chem. 2014, 4643 (2014)

    Article  CAS  Google Scholar 

  62. S. Wang, K. Wang, X. Kong, S. Zhang, G. Jiang, F. Ji, Adv. Synth. Catal. 361, 3986 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Project of Liaoning Provincial Department of Education (CN) [LJKMZ20221682] and [2023J0917], the Doctoral Initiation Foundation of Liaoning Institute of Science and Tenchnology [2307B22], LiaoNing Basic Applied Research Program (Youth Program), [2023JH2/101600066].

Author information

Authors and Affiliations

Authors

Contributions

Jingming Zhao:Performing experimental works. Xudong Luo: Performing experimental works. Xiaoliang Li:Performing experimental works and taking analyzes. Li-Yuan Chang: Manager project.

Corresponding authors

Correspondence to Xiaoliang Li or Li-Yuan Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Luo, X., Li, X. et al. Construction of Fe3O4@BTH-Pyr-CuCl nanocomposite as a highly active magnetically reusable catalyst for arylation of a category of heterocycles. Res Chem Intermed 50, 2131–2156 (2024). https://doi.org/10.1007/s11164-024-05250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-024-05250-4

Keywords

Navigation