Skip to main content
Log in

Development of novel CaO-based catalysts from Corallina elongata alga for enhanced methylene blue photodegradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the pursuit of advancing novel photocatalytic solutions for removal methylene blue (MB) from aqueous environments, our investigation centered on harnessing the potential of red alga valorization. By employing meticulous characterization techniques, we observed a transformative conversion of powdered alga into calcium oxide, distinguished by intricately structured and uniformly porous qualities. Furthermore, the analysis of UV outcomes unveiled a remarkably narrow band gap energy (2.61 eV) within the photocatalyst. Notably, our catalytic system exhibited exceptional prowess in the solar-driven photodegradation of methylene blue, achieving a substantial degradation efficiency (96%) within a brief 20-min interval. Conclusively, this study has unveiled the latent potential of red alga as an auspicious foundation for pioneering the evolution of novel photocatalytic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Reaction Kinetics, Mechanisms and Catalysis.

References

  1. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  2. Liu Y, Hu Z, Yu JC (2020) Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem Mater 32:1488–1494. https://doi.org/10.1021/acs.chemmater.9b04448

    Article  CAS  Google Scholar 

  3. Navale ST, Huang Q, Cao P et al (2019) C2H5OH sensing properties of solid-state mediated BiOBr nanoplates. Sens Actuators, B Chem 300:126987. https://doi.org/10.1016/j.snb.2019.126987

    Article  CAS  Google Scholar 

  4. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168:806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Tian S, Ning P (2014) Degradation mechanism of methylene blue in a heterogeneous fenton-like reaction catalyzed by ferrocene. Ind Eng Chem Res 53:643–649. https://doi.org/10.1021/ie403402q

    Article  CAS  Google Scholar 

  6. Shaban M, Abukhadra MR, Ibrahim SS, Shahien MG (2017) Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization. Appl Water Sci 7:4743–4756. https://doi.org/10.1007/s13201-017-0637-y

    Article  CAS  Google Scholar 

  7. Alexander JT, Hai FI, Al-aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manage 111:195–207. https://doi.org/10.1016/j.jenvman.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee S, Tran HN, Godfred O-B, Woo SH (2018) Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method. ACS Sustain Chem Eng 6:3604–3614. https://doi.org/10.1021/acssuschemeng.7b03929

    Article  CAS  Google Scholar 

  9. Ghaedi M, Hajjati S, Mahmudi Z et al (2015) Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37. https://doi.org/10.1016/j.cej.2014.12.090

    Article  CAS  Google Scholar 

  10. Gong J, Li C, Wasielewski MR (2019) Advances in solar energy conversion. Chem Soc Rev 48:1862–1864. https://doi.org/10.1039/C9CS90020A

    Article  CAS  PubMed  Google Scholar 

  11. Tian J, Leng Y, Zhao Z et al (2015) Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11:419–427. https://doi.org/10.1016/j.nanoen.2014.10.025

    Article  CAS  Google Scholar 

  12. Zhang X, He X, Kang Z et al (2019) Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (photo)catalytic reduction and bacterial inactivation. ACS Sustain Chem Eng 7:15762–15771. https://doi.org/10.1021/acssuschemeng.9b04083

    Article  CAS  Google Scholar 

  13. Xu C, Ravi Anusuyadevi P, Aymonier C et al (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868–3902. https://doi.org/10.1039/C9CS00102F

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Zhang Z, Zhang L et al (2018) Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J Am Chem Soc 140:14595–14598. https://doi.org/10.1021/jacs.8b09344

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Guan BY, Wang X, Lou XWD (2018) Formation of hierarchical Co9 S8 @ZnIn2 S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc 140:15145–15148. https://doi.org/10.1021/jacs.8b07721

    Article  CAS  PubMed  Google Scholar 

  16. Zhou G, Zheng L-L, Wang D et al (2019) A general strategy via chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chem Commun 55:4150–4153. https://doi.org/10.1039/C9CC01161G

    Article  CAS  Google Scholar 

  17. Kumar KVA, Chandana L, Ghosal P, Subrahmanyam Ch (2018) Simultaneous photocatalytic degradation of p -cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Mol Catal 451:87–95. https://doi.org/10.1016/j.mcat.2017.11.014

    Article  CAS  Google Scholar 

  18. Zuliani A, Muñoz-Batista MJ, Luque R (2018) Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites. Green Chem 20:3001–3007. https://doi.org/10.1039/C8GC00669E

    Article  CAS  Google Scholar 

  19. Xie K, Zhang H, Sun S, Gao Y (2019) Functions of boric acid in fabricating TiO2 for photocatalytic degradation of organic contaminants and hydrogen evolution. Mol Catal 479:110614. https://doi.org/10.1016/j.mcat.2019.110614

    Article  CAS  Google Scholar 

  20. Saravanan R, Sacari E, Gracia F et al (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  21. Rajendran S, Khan MM, Gracia F et al (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641. https://doi.org/10.1038/srep31641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang Y, Cui W, An W et al (2018) Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure. Appl Catal B 221:36–46. https://doi.org/10.1016/j.apcatb.2017.08.076

    Article  CAS  Google Scholar 

  23. Saravanan R, Thirumal E, Gupta VK et al (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401. https://doi.org/10.1016/j.molliq.2012.10.018

    Article  CAS  Google Scholar 

  24. Saravanan R, Khan MM, Gupta VK et al (2015) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651. https://doi.org/10.1039/C5RA02557E

    Article  CAS  Google Scholar 

  25. Liu M, Cheng Z, Qian K et al (2019) Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling. Chem Mater 31:4564–4574. https://doi.org/10.1021/acs.chemmater.9b01325

    Article  CAS  Google Scholar 

  26. Liang J, Li X, Yu Z et al (2017) Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II). ACS Sustain Chem Eng 5:5049–5058. https://doi.org/10.1021/acssuschemeng.7b00434

    Article  CAS  Google Scholar 

  27. Houas A (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31:145–157. https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  28. Richard C (1993) Regioselectivity of oxidation by positive holes (h+) in photocatalytic aqueous transformations. J Photochem Photobiol, A 72:179–182. https://doi.org/10.1016/1010-6030(93)85026-5

    Article  CAS  Google Scholar 

  29. Wang S, Wang Z, Zhuang Q (1992) Photocatalytic reduction of the environmental pollutant CrVI over a cadmium sulphide powder under visible light illumination. Appl Catal B 1:257–270. https://doi.org/10.1016/0926-3373(92)80052-2

    Article  CAS  Google Scholar 

  30. Lou Z, Huang B, Qin X et al (2011) One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. CrystEngComm 13:1789. https://doi.org/10.1039/c0ce00856g

    Article  CAS  Google Scholar 

  31. Zhang K, Liu C, Huang F et al (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B 68:125–129. https://doi.org/10.1016/j.apcatb.2006.08.002

    Article  CAS  Google Scholar 

  32. Geethakarthi A, Hemapriya S (2022) Degradation of an acid dye using calcium oxide extracted from waste egg shells. Medan, Indonesia, p 130005

    Google Scholar 

  33. Bouremmad F, Bouchair A, Parapari SS, Shalima S, Gulgun MA (2019) Characterization of the Corallina elongata alga and study of its biosorption properties for methylene blue. JCS Pak 41:62–62. https://doi.org/10.52568/000712/JCSP/41.01.2019

    Article  CAS  Google Scholar 

  34. Doğar Ç, Gürses A, Açıkyıldız M, Özkan E (2010) Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green algae Ulothrix sp. Colloids Surf, B 76:279–285. https://doi.org/10.1016/j.colsurfb.2009.11.004

    Article  CAS  Google Scholar 

  35. Mahini R, Esmaeili H, Foroutan R (2018) Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turk J Biochem 43:623–631. https://doi.org/10.1515/tjb-2017-0333

    Article  CAS  Google Scholar 

  36. Park JH, Min DJ, Song HS (2002) Structural investigation of CaO-Al2O3 and CaO-Al2O3-CaF2 slags via Fourier transform infrared spectra. ISIJ Int 42:38–43. https://doi.org/10.2355/isijinternational.42.38

    Article  CAS  Google Scholar 

  37. Xie W, Huang X (2006) Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal Lett 107:53–59. https://doi.org/10.1007/s10562-005-9731-0

    Article  CAS  Google Scholar 

  38. Mittal A, Mittal J, Malviya A et al (2010) Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J Colloid Interface Sci 342:518–527. https://doi.org/10.1016/j.jcis.2009.10.046

    Article  CAS  PubMed  Google Scholar 

  39. Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E (2014) Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J Ind Eng Chem 20:113–117. https://doi.org/10.1016/j.jiec.2013.04.018

    Article  CAS  Google Scholar 

  40. Ziane S, Bessaha F, Marouf-Khelifa K, Khelifa A (2018) Single and binary adsorption of reactive black 5 and Congo red on modified dolomite: performance and mechanism. J Mol Liq 249:1245–1253. https://doi.org/10.1016/j.molliq.2017.11.130

    Article  CAS  Google Scholar 

  41. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer International Publishing, Cham

    Book  Google Scholar 

  42. Brik A, Naama S, Hadjersi T et al (2020) Photodegradation of methylene blue under UV and visible light irradiation by Er2O3-coated silicon nanowires as photocatalyst. Reac Kinet Mech Cat 131:525–536. https://doi.org/10.1007/s11144-020-01862-0

    Article  CAS  Google Scholar 

  43. Aziz BK, Karim MAH (2019) Efficient catalytic photodegradation of methylene blue from medical lab wastewater using MgO nanoparticles synthesized by direct precipitation method. Reac Kinet Mech Cat 128:1127–1139. https://doi.org/10.1007/s11144-019-01677-8

    Article  CAS  Google Scholar 

  44. Messemeche R, Benkhetta Y, Attaf A et al (2022) Photocatalytic mechanisms reactions of gallium doped TiO2 thin films synthesized by sol gel (spin coating) in the degradation of methylene blue (MB) dye under sunlight irradiation. Reac Kinet Mech Cat 135:2735–2747. https://doi.org/10.1007/s11144-022-02288-6

    Article  CAS  Google Scholar 

  45. Wang R-X, Zhu Q, Wang W-S et al (2015) BaTiO3–graphene nanocomposites: synthesis and visible light photocatalytic activity. New J Chem 39:4407–4413. https://doi.org/10.1039/C4NJ02272F

    Article  CAS  Google Scholar 

  46. Mengting Z, Kurniawan TA, Fei S et al (2019) Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–Vis irradiation. Environ Pollut 255:113182. https://doi.org/10.1016/j.envpol.2019.113182

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen-Phan T-D, Pham VH, Shin EW et al (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232. https://doi.org/10.1016/j.cej.2011.03.060

    Article  CAS  Google Scholar 

  48. Tao H, Liang X, Zhang Q, Chang C-T (2015) Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen. Appl Surf Sci 324:258–264. https://doi.org/10.1016/j.apsusc.2014.10.129

    Article  CAS  Google Scholar 

  49. Liu L, He A (2022) Optical and electrochemical study on the performance of Au@TiO2 core-shell heterostructured nanoparticles as photocatalyst for photodegradation of methylene blue under solar-light irradiation. Int J Electrochem Sci 17:220636. https://doi.org/10.20964/2022.06.27

    Article  CAS  Google Scholar 

  50. Li J, Zhou SL, Hong G-B, Chang C-T (2013) Hydrothermal preparation of P25–graphene composite with enhanced adsorption and photocatalytic degradation of dyes. Chem Eng J 219:486–491. https://doi.org/10.1016/j.cej.2013.01.031

    Article  CAS  Google Scholar 

  51. Fu Z, Zhang S, Fu Z (2019) Preparation of multicycle GO/TiO2 composite photocatalyst and study on degradation of methylene blue synthetic wastewater. Appl Sci 9:3282. https://doi.org/10.3390/app9163282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassim Sayoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchair, A., Sayoud, N., Amayreh, M.Y. et al. Development of novel CaO-based catalysts from Corallina elongata alga for enhanced methylene blue photodegradation. Reac Kinet Mech Cat 137, 607–621 (2024). https://doi.org/10.1007/s11144-023-02523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02523-8

Keywords

Navigation