Skip to main content
Log in

Coprecipitation nanoarchitectonics for the synthesis of magnetite: a review of mechanism and characterization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles have attracted interest of researchers from different science fields such as medicine, biology, physics, or chemistry due to their multifunctional properties including biocompatibility, superparamagnetism and low toxicity. Several methods have been developed to synthesize magnetic nanoparticles with controlled size, shape, and magnetic properties. Among them, coprecipitation is the most widely used because of several advantages such as high-yield production of nanoparticles, its simplicity, low-cost and its eco-friendly reaction conditions, but it also has low reproducibility. To achieve the magnetic nanoparticles with the desired properties, the investigation and control of reaction parameters are essential. In this article, the mechanism of coprecipitation reaction for magnetite nanoparticle synthesis and recent studies in reaction parameters controlling the particle properties will be reviewed. In addition, the most used methods for structural and magnetic characterization of magnetite and magnetite functionalized nanoparticles are presented and exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

© American Chemical Society

Fig. 3

© Copyright Elsevier

Fig. 4

© Copyright Elsevier

Fig. 5

© Copyright Elsevier

Fig. 6

© Copyright Elsevier

Fig. 7

© Copyright Elsevier

Fig. 8

© Copyright Elsevier

Fig. 9

Similar content being viewed by others

Data availability

No new data was created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. Arteaga-Díaz SJ, Meramo-Hurtado SI, León-Pulido J, Zuorro A, González-Delgado AD (2019) Environmental assessment of large scale production of magnetite (Fe3O4) nanoparticles via coprecipitation. Appl Sci 9:1–10. https://doi.org/10.3390/app9081682

    Article  CAS  Google Scholar 

  2. Ebner AD, Ritter JA, Navratil JD (2001) Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite. Ind Eng Chem Res 40:1615–1623. https://doi.org/10.1021/ie000695c

    Article  CAS  Google Scholar 

  3. Park H, May A, Portilla L, Dietrich H, Munch F, Rejek T, Sarcletti M, Banspach L, Zahn D, Halik M (2020) Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nat Sustain 3:129–135. https://doi.org/10.1038/s41893-019-0452-6

    Article  Google Scholar 

  4. Matei E, Predescu A, Dragan C, Pantilimon C, Predescu C (2017) Characterization of magnetic nanoiron oxides for the removal of metal ions from aqueous solution. Anal Lett 50:2822–2838. https://doi.org/10.1080/00032719.2016.1257016

    Article  CAS  Google Scholar 

  5. Predescu A, Matei E, Predescu A, Berbecaru A, Sohaciu M, Predescu C (2016) Removal of hexavalent chromium from waters by means of a TiO2-Fe3O4 nanocomposite. Environ Eng Manag J 15:989–994. https://doi.org/10.30638/eemj.2016.108

    Article  CAS  Google Scholar 

  6. Matei E, Predescu AM, Coman G, Balanescu M, Sohaciu M, Predescu C, Favier L, Niculescu M (2016) Magnetic nanoparticles used in envinronmental engineering for Pb and Zn removal. Environ Eng Manag J 15:1019–1025. https://doi.org/10.30638/eemj.2016.112

    Article  CAS  Google Scholar 

  7. Matei E, Predescu C, Badanoiu A, Predescu A, Ficai D (2015) Application of magnetite nanoparticles as adsorbent for Cr, Cd, Ni and Cu from aqueous solutions. Environ Eng Manag J 14:1001–1010. https://doi.org/10.30638/eemj.2015.110

    Article  Google Scholar 

  8. Mohammadi M, Pourseyed AF (2021) Magnetite Fe3O4 surface as an effective drug delivery system for cancer treatment drugs: density functional theory study. J Biomol Struct Dyn 39:2798–2805. https://doi.org/10.1080/07391102.2020.1754915

    Article  CAS  Google Scholar 

  9. Chandra S, Mehta S, Nigam S, Bahadur D (2010) Dendritic magnetite nanocarriers for drug delivery applications. New J Chem 34:648–655. https://doi.org/10.1039/b9nj00609e

    Article  CAS  Google Scholar 

  10. Bauer LM, Situ SF, Griswold MA, Samia AC (2016) High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI). Nanoscale 8:12162–12169. https://doi.org/10.1039/c6nr01877g

    Article  CAS  PubMed  Google Scholar 

  11. Dey K, Karmakar G, Upadhyay M, Ghosh P (2020) Polyacrylate-magnetite nanocomposite as a potential multifunctional additive for lube oil. Sci Rep 10:19151. https://doi.org/10.1038/s41598-020-76246-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tudorache M, Opris C, Cojocaru B, Apostol NG, Tirsoaga A, Coman SM, Parvulescu VI, Duraki B, Krumeich F, van Bokhoven JA (2018) Highly efficient, easily recoverable, and recyclable re-SiO2-Fe3O4 catalyst for the fragmentation of lignin. Acs Sustain Chem Eng 6:9606–9618. https://doi.org/10.1021/acssuschemeng.7b04294

    Article  CAS  Google Scholar 

  13. Kazemi M, Ghobadi M (2017) Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol Rev 6:549–571. https://doi.org/10.1515/ntrev-2016-0113

    Article  CAS  Google Scholar 

  14. Oprescu EE, Enascuta CE, Doukeh R, Calin C, Lavric V (2021) Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates. Renew Energ 176:651–662. https://doi.org/10.1016/j.renene.2021.05.120

    Article  CAS  Google Scholar 

  15. Salimi P, Norouzi O, Pourhosseini SEM (2019) Two-step synthesis of nanohusk Fe3O4 embedded in 3D network pyrolytic marine biochar for a new generation of anode materials for lithium-ion batteries. J Alloys Compd 786:930–937. https://doi.org/10.1016/j.jallcom.2019.02.048

    Article  CAS  Google Scholar 

  16. Jaime J, Rangel G, Munoz-Bonilla A, Mayoral A, Herrasti P (2017) Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sensor Actuat B 238:693–701. https://doi.org/10.1016/j.snb.2016.07.059

    Article  CAS  Google Scholar 

  17. Polatoğlu İ (2019) Electrochemical sensing platform based on tyrosinase immobilized magnetite chitosan nanobiocomposite film and its application as catechol biosensor. J Electrochem Soc 166:B1620–B1629. https://doi.org/10.1149/2.1041915jes

    Article  CAS  Google Scholar 

  18. Dubey V, Kain V (2018) Synthesis of magnetite by coprecipitation and sintering and its characterization. Mater Manuf Process 33:835–839. https://doi.org/10.1080/10426914.2017.1401720

    Article  CAS  Google Scholar 

  19. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11:2284–2303. https://doi.org/10.1021/acsnano.7b00609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drmota A, Drofenik M, Koselj J, Znidarsic A (2012) Microemulsion method for synthesis of magnetic oxide nanoparticles. In: Najjar R, Hrsg. Microemulsions— an introduction to properties and applications. Intech Open

  21. Lemine OM, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M (2012) Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlatt Microstruct 52:793–799. https://doi.org/10.1016/j.spmi.2012.07.009

    Article  CAS  Google Scholar 

  22. Ahmadi S, Chia CH, Zakaria S, Saeedfar K, Asim N (2012) Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J Magn Magn Mater 324:4147–4150. https://doi.org/10.1016/j.jmmm.2012.07.023

    Article  CAS  Google Scholar 

  23. Cabrera L, Gutierrez S, Menendez N, Morales MP, Heffasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  24. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327. https://doi.org/10.1021/ja0508469

    Article  CAS  PubMed  Google Scholar 

  25. Alfredo Reyes Villegas V, De León I, Ramírez J, Hernandez Guevara E, Perez Sicairos S, Angelica Hurtado Ayala L, Landeros SB (2020) Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene. J Saudi Chem Soc 24:223–235. https://doi.org/10.1016/j.jscs.2019.12.004

    Article  CAS  Google Scholar 

  26. Andrade AL, Valente MA, Ferreira JMF, Fabris JD (2012) Preparation of size-controlled nanoparticles of magnetite. J Magn Magn Mater 324:1753–1757. https://doi.org/10.1016/j.jmmm.2011.12.033

    Article  CAS  Google Scholar 

  27. Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials. https://doi.org/10.3390/nano8100810

    Article  PubMed  Google Scholar 

  28. Popescu RC, Andronescu E, Vasile BS (2019) Recent advances in magnetite nanoparticle functionalization for nanomedicine. Nanomaterials. https://doi.org/10.3390/nano9121791

    Article  PubMed  PubMed Central  Google Scholar 

  29. Daoush WM (2017) Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res. https://doi.org/10.15406/jnmr.2017.05.00118

    Article  Google Scholar 

  30. Santoso UT, Abdullah MDR, Ariyani D, Waskito J (2021) Room temperature synthesis of magnetite particles by an oil membrane layer-assisted reverse co-precipitation approach. Adv Mater Res 1162:41–46. https://doi.org/10.4028/www.scientific.net/AMR.1162.41

    Article  Google Scholar 

  31. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials 13:1–35. https://doi.org/10.3390/ma13204644

    Article  CAS  Google Scholar 

  32. Krishnan KM (2010) Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558. https://doi.org/10.1109/TMAG.2010.2046907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M (2021) Polymer-coated magnetite nanoparticles for protein immobilization. Materials 14:248. https://doi.org/10.3390/ma14020248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  35. Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215. https://doi.org/10.1080/10408430701776680

    Article  CAS  Google Scholar 

  36. Kozlenko DP, Dubrovinsky LS, Kichanov SE, Lukin EV, Cerantola V, Chumakov AI, Savenko BN (2019) Magnetic and electronic properties of magnetite across the high pressure anomaly. Sci Rep 9:4464. https://doi.org/10.1038/s41598-019-41184-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Narang SB, Pubby K (2021) Nickel spinel ferrites: a review. J Magn Magn Mater 519:167163. https://doi.org/10.1016/j.jmmm.2020.167163

    Article  CAS  Google Scholar 

  38. Benitez MJ, Mishra D, Szary P, Badini Confalonieri GA, Feyen M, Lu AH, Agudo L, Eggeler G, Petracic O, Zabel H (2011) Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays. J Phys Condens Matter 23:126003. https://doi.org/10.1088/0953-8984/23/12/126003

    Article  CAS  PubMed  Google Scholar 

  39. Peternele WS, Fuentes VM, Fascineli ML, da Silva JR, Silva RC, Lucci CM, de Azevedo RB (2014) Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. J Nanomater 2014:682985. https://doi.org/10.1155/2014/682985

    Article  CAS  Google Scholar 

  40. Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of gamma-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Matter 22:255401. https://doi.org/10.1088/0953-8984/22/25/255401

    Article  CAS  PubMed  Google Scholar 

  41. Doukeh R, Râpă M, Matei E, Prodan D, Győrgy R, Trifoi A, Banu I (2023) An evaluation of glycerol acetalization with benzaldehyde over a ferromagnetic heteropolyacid catalyst. Catal 13:1–21. https://doi.org/10.3390/catal13040782

    Article  CAS  Google Scholar 

  42. Peng J, Zou F, Liu L, Tang L, Yu L, Chen W, Liu H, Tang J-b, Wu L-x (2008) Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Trans Nonferrous Met Soc 18:393–398. https://doi.org/10.1016/S1003-6326(08)60069-2

    Article  Google Scholar 

  43. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  44. Pichon BP, Gerber O, Lefevre C, Florea I, Fleutot S, Baaziz W, Pauly M, Ohlmann M, Ulhaq C, Ersen O, Pierron-Bohnes V, Panissod P, Drillon M, Begin-Colin S (2011) Microstructural and magnetic investigations of wüstite-spinel core-shell cubic-shaped nanoparticles. Chem Mater 23:2886–2900. https://doi.org/10.1021/cm2003319

    Article  CAS  Google Scholar 

  45. Vargas-Ortiz JR, Gonzalez C, Esquivel K (2022) Magnetic iron nanoparticles: synthesis, surface enhancements, and biological challenges. Processes 10:1–29. https://doi.org/10.3390/pr10112282

    Article  CAS  Google Scholar 

  46. Sharafi Z, Bakhshi B, Javidi J, Adrangi S (2018) Synthesis of silica-coated iron oxide nanoparticles: preventing aggregation without using additives or seed pretreatment. Iran J Pharm Res 17:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Na K-H, Kim W-T, Park D-C, Shin H-G, Lee S-H, Park J, Song T-H, Choi W-Y (2018) Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process. Thin Solid Films 660:358–364. https://doi.org/10.1016/j.tsf.2018.06.018

    Article  CAS  Google Scholar 

  48. Ying T-Y, Yiacoumi S, Tsouris C (2002) An electrochemical method for the formation of magnetite particles. J Dispers Sci Technol 23:569–576. https://doi.org/10.1081/DIS-120014025

    Article  CAS  Google Scholar 

  49. Franger S, Berthet P, Berthon J (2004) Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J Solid State Electrochem 8:218–223. https://doi.org/10.1007/s10008-003-0469-6

    Article  CAS  Google Scholar 

  50. Jordan A, Scholz R, Wust P, Fähling H, Roland F (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419. https://doi.org/10.1016/S0304-8853(99)00088-8

    Article  CAS  Google Scholar 

  51. Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46–55. https://doi.org/10.1016/j.jmmm.2006.05.001

    Article  CAS  Google Scholar 

  52. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567. https://doi.org/10.3390/ma6125549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LaGrow AP, Besenhard MO, Hodzic A, Sergides A, Bogart LK, Gavriilidis A, Thanh NTK (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution. Nanoscale 11:6620–6628. https://doi.org/10.1039/c9nr00531e

    Article  CAS  PubMed  Google Scholar 

  54. Blanco-Andujar C, Ortega D, Pankhurst QA, Thanh NTK (2012) Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. J Mater Chem 22:12498–12506. https://doi.org/10.1039/c2jm31295f

    Article  CAS  Google Scholar 

  55. Ahn T, Kim JH, Yang HM, Lee JW, Kim JD (2012) Formation pathways of magnetite nanoparticles by coprecipitation method. J Phys Chem C 116:6069–6076. https://doi.org/10.1021/jp211843g

    Article  CAS  Google Scholar 

  56. LaMer VK, Dinegar RH (2002) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. https://doi.org/10.1021/ja01167a001

    Article  Google Scholar 

  57. Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I (2021) Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select 2:1146–1186. https://doi.org/10.1002/nano.202000162

    Article  CAS  Google Scholar 

  58. Gnanaprakash G, Mahadevan S, Jayakumar T, Kalyanasundaram P, Philip J, Raj B (2007) Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater Chem Phys 103:168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011

    Article  CAS  Google Scholar 

  59. Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85:7–10. https://doi.org/10.1016/0304-8853(90)90005-b

    Article  CAS  Google Scholar 

  60. Niu JM, Zheng ZG (2014) Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method. Adv Mater Res 900:172–176. https://doi.org/10.4028/www.scientific.net/AMR.900.172

    Article  CAS  Google Scholar 

  61. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 177:421–427. https://doi.org/10.1016/j.mseb.2012.01.003

    Article  CAS  Google Scholar 

  62. Saragi T, Depi BL, Butarbutar S, Permana B, Risdiana. (2018) The impact of synthesis temperature on magnetite nanoparticles size synthesized by co-precipitation method. J Phys Conf Ser 1013:012190. https://doi.org/10.1088/1742-6596/1013/1/012190

    Article  CAS  Google Scholar 

  63. Meng HN, Zhang ZZ, Zhao FX, Qiu T, Yang JD (2013) Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl Surf Sci 280:679–685. https://doi.org/10.1016/j.apsusc.2013.05.041

    Article  CAS  Google Scholar 

  64. Yazid NA, Joon YC (2019) Co-precipitation synthesis of magnetic nanoparticles for efficient removal of heavy metal from synthetic wastewater. AIP Conf Proc 2124:020019. https://doi.org/10.1063/1.5117079

    Article  CAS  Google Scholar 

  65. Jolivet JP, Froidefond C, Pottier A, Chaneac C, Cassaignon S, Tronc E, Euzen P (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium a semi-quantitative modelling. J Mater Chem 14:3281–3288. https://doi.org/10.1039/b407086k

    Article  CAS  Google Scholar 

  66. Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058

    Article  CAS  Google Scholar 

  67. Iwasaki T, Mizutani N, Watano S, Yanagida T, Kawai T (2010) Size control of magnetite nanoparticles by organic solvent-free chemical coprecipitation at room temperature. J Exp Nanosci 5:251–262. https://doi.org/10.1080/17458080903490731

    Article  CAS  Google Scholar 

  68. Roth HC, Schwaminger SP, Schindler M, Wagner FE, Berensmeier S (2015) Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J Magn Magn Mater 377:81–89. https://doi.org/10.1016/j.jmmm.2014.10.074

    Article  CAS  Google Scholar 

  69. Herea DD, Chiriac H, Lupu N (2011) Preparation and characterization of magnetic nanoparticles with controlled magnetization. J Nanopart Res 13:4357–4369. https://doi.org/10.1007/s11051-011-0385-0

    Article  CAS  Google Scholar 

  70. Yu WG, Zhang TL, Qiao XJ, Zhang JG, Yang L (2007) Effects of synthetical conditions on octahedral magnetite nanoparticles. Mat Sci Eng B 136:101–105. https://doi.org/10.1016/j.mseb.2006.08.030

    Article  CAS  Google Scholar 

  71. Valenzuela R, Fuentes MC, Parra C, Baeza J, Duran N, Sharma SK, Knobel M, Freer J (2009) Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. J Alloys Compd 488:227–231. https://doi.org/10.1016/j.jallcom.2009.08.087

    Article  CAS  Google Scholar 

  72. Fadli A, Komalasari AA, Iwantono R, Addabsi AS (2019) Synthesis of magnetite nanoparticles via co-precipitation method. Iop Conf Ser-Mat Sci 622:012013. https://doi.org/10.1088/1757-899x/622/1/012013

    Article  CAS  Google Scholar 

  73. Schwaminger SP, Syhr C, Berensmeier S (2020) Controlled synthesis of magnetic iron oxide nanoparticles: magnetite or maghemite? Crystals 10:214. https://doi.org/10.3390/cryst10030214

    Article  CAS  Google Scholar 

  74. Forge D, Roch A, Laurent S, Tellez H, Gossuin Y, Renaux F, Vander Elst L, Muller RN (2008) Optimization of the synthesis of superparamagnetic contrast agents by the design of experiments method. J Phys Chem C 112:19178–19185. https://doi.org/10.1021/jp803832k

    Article  CAS  Google Scholar 

  75. Ibarra-Sánchez Jd, Preciado-Rojas Y (2016) Effect of operating parameters in the synthesis of magnetic nanoparticles for biomedical applications using a design of experiments 2k. Nova Scientia 8:157–180. https://doi.org/10.21640/ns.v8i17.575

    Article  Google Scholar 

  76. Rahmawati R, Permana MG, Harison B, Nugraha YB, Suyatman KD (2017) Optimization of frequency and stirring rate for synthesis of magnetite (Fe3O4) nanoparticles by using coprecipitation- ultrasonic irradiation methods. Procedia Eng 170:55–59. https://doi.org/10.1016/j.proeng.2017.03.010

    Article  CAS  Google Scholar 

  77. Ansari MJ, Kadhim MM, Hussein BA, Lafta HA, Kianfar E (2022) Synthesis and stability of magnetic nanoparticles. Bionanoscience 12:627–638. https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  78. Kharisov BI, Dias HVR, Kharissova OV, Vazquez A, Pena Y, Gomez I (2014) Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 4:45354–45381. https://doi.org/10.1039/c4ra06902a

    Article  CAS  Google Scholar 

  79. Jose Chirayil C, Abraham J, Kumar Mishra R, George SC, Thomas S (2017) Instrumental techniques for the characterization of nanoparticles. In: Thomas S, Thomas R, Zachariah AK et al (eds) Thermal and rheological measurement techniques for nanomaterials characterization. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  80. Xiong Z, Li SH, Xia YZ (2016) Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. New J Chem 40:9951–9957. https://doi.org/10.1039/c6nj02051h

    Article  CAS  Google Scholar 

  81. Yu SM, Laromaine A, Roig A (2014) Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol. J Nanopart Res 16:2484. https://doi.org/10.1007/s11051-014-2484-1

    Article  CAS  Google Scholar 

  82. Alterary SS, AlKhamees A (2021) Synthesis, surface modification, and characterization of Fe3O4@SiO2 core@shell nanostructure. Green Process Synth 10:384–391. https://doi.org/10.1515/gps-2021-0031

    Article  CAS  Google Scholar 

  83. Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HJ (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705. https://doi.org/10.1039/c0nr00497a

    Article  CAS  PubMed  Google Scholar 

  84. Karimi Pasandideh E, Kakavandi B, Nasseri S, Mahvi AH, Nabizadeh R, Esrafili A, Rezaei KR (2016) Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal. J Environ Health Sci Eng 14:21. https://doi.org/10.1186/s40201-016-0262-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bae H, Ahmad T, Rhee I, Chang Y, Jin SU, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7:44. https://doi.org/10.1186/1556-276X-7-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743. https://doi.org/10.1016/j.addr.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  87. Wulandari IO, Mardila VT, Santjojo DJDH, Sabarudin A (2018) Preparation and characterization of chitosan-coated Fe3O4 nanoparticles using ex-situ co-precipitation method and tripolyphosphate/sulphate as dual crosslinkers. IOP Conf Ser 299:012064. https://doi.org/10.1088/1757-899x/299/1/012064

    Article  CAS  Google Scholar 

  88. Sirivat A, Paradee N (2019) Facile synthesis of gelatin-coated Fe3O4 nanoparticle: effect of pH in single-step co-precipitation for cancer drug loading. Mater Design 181:107942. https://doi.org/10.1016/j.matdes.2019.107942

    Article  CAS  Google Scholar 

  89. Can HK, Kavlak S, ParviziKhosroshahi S, Guner A (2018) Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif Cells Nanomed Biotechnol 46:421–431. https://doi.org/10.1080/21691401.2017.1315428

    Article  CAS  PubMed  Google Scholar 

  90. Castelló J, Gallardo M, Busquets MA, Estelrich J (2015) Chitosan (or alginate)-coated iron oxide nanoparticles: a comparative study. Colloids Surf A: Physicochem Eng 468:151–158. https://doi.org/10.1016/j.colsurfa.2014.12.031

    Article  CAS  Google Scholar 

  91. Sandler SE, Fellows B, Mefford OT (2019) Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal Chem 91:14159–14169. https://doi.org/10.1021/acs.analchem.9b03518

    Article  CAS  Google Scholar 

  92. Namduri H, Nasrazadani S (2008) Quantitative analysis of iron oxides using fourier transform infrared spectrophotometry. Corros Sci 50:2493–2497. https://doi.org/10.1016/j.corsci.2008.06.034

    Article  CAS  Google Scholar 

  93. de Mendonça ESDT, de Faria ACB, Dias SCL, Aragón FFH, Mantilla JC, Coaquira JAH, Dias JA (2019) Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf Interfaces 14:34–43. https://doi.org/10.1016/j.surfin.2018.11.005

    Article  CAS  Google Scholar 

  94. Xie SB, Zhang BL, Wang L, Wang J, Li X, Yang G, Gao FB (2015) Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Appl Surf Sci 326:32–38. https://doi.org/10.1016/j.apsusc.2014.11.099

    Article  CAS  Google Scholar 

  95. Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Dragan C, Vidu R, Predescu C, Kuncser V (2018) Synthesis and characterization of dextran-coated iron oxide nanoparticles. R Soc Open Sci 5:171525. https://doi.org/10.1098/rsos.171525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Díaz-Hernández A, Gracida J, García-Almendárez BE, Regalado C, Núñez R, Amaro-Reyes A (2018) Characterization of magnetic nanoparticles coated with chitosan: a potential approach for enzyme immobilization. J Nanomater 2018:1–11. https://doi.org/10.1155/2018/9468574

    Article  CAS  Google Scholar 

  97. Bar-Shir A, Avram L, Yariv-Shoushan S, Anaby D, Cohen S, Segev-Amzaleg N, Frenkel D, Sadan O, Offen D, Cohen Y (2014) Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium. NMR Biomed 27:774–783. https://doi.org/10.1002/nbm.3117

    Article  CAS  PubMed  Google Scholar 

  98. Modrogan C, Caprarescu S, Dancila AM, Orbulet OD, Grumezescu AM, Purcar V, Raditoiu V, Fierascu RC (2021) Modified composite based on magnetite and polyvinyl alcohol: synthesis, characterization, and degradation studies of the methyl orange dye from synthetic wastewater. Polymers 13:1–13. https://doi.org/10.3390/polym13223911

    Article  CAS  Google Scholar 

  99. Sathyanarayanan P, Raina G (2011) Coating thickness study of biopolymer-magnetite core–shell nanoparticles. Int J Nanosci 08:359–366. https://doi.org/10.1142/s0219581x09006274

    Article  Google Scholar 

  100. Ma HL, Qi XR, Maitani Y, Nagai T (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333:177–186. https://doi.org/10.1016/j.ijpharm.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  101. Zhang PB, Liu P, Fan MM, Jiang PP, Haryono A (2021) High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively. Renew Energ 175:244–252. https://doi.org/10.1016/j.renene.2021.05.033

    Article  CAS  Google Scholar 

  102. Sima F, Ristoscu C, Duta L, Gallet O, Anselme K, Mihailescu IN (2016) Laser thin films deposition and characterization for biomedical applications. In: Laser surface modification of biomaterials. Woodhead Publishing, pp 77–125

  103. Pantilimon MC, Dragan CI, Gradinaru C, Predescu AM, Sohaciu M, Coman G, Matei E, Predescu C (2018) Morphological analysis of magnetic nanomaterials through comparative methods. Univ Politeh Buchar 80:175–182

    CAS  Google Scholar 

  104. Ingham B, Toney MF (2014) X-ray diffraction for characterizing metallic films. In: Metallic films for electronic, optical and magnetic applications. Woodhead Publishing pp 3–38.

  105. Narayanaswamy V, Sambasivam S, Saj A, Alaabed S, Issa B, Al-Omari IA, Obaidat IM (2021) Role of magnetite nanoparticles size and concentration on hyperthermia under various field frequencies and strengths. Molecules 26:1–14. https://doi.org/10.3390/molecules26040796

    Article  CAS  Google Scholar 

  106. Shi D, Sadat ME, Dunn AW, Mast DB (2015) Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7:8209–8232. https://doi.org/10.1039/c5nr01538c

    Article  CAS  PubMed  Google Scholar 

  107. Predescu AM, Vidu R, Predescu A, Matei E, Pantilimon C, Predescu C (2019) Synthesis and characterization of bimodal structured Cu-Fe3O4 nanocomposites. Powder Technol 342:938–953. https://doi.org/10.1016/j.powtec.2018.10.015

    Article  CAS  Google Scholar 

  108. Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, Ruby C, Kappler A, Haderlein SB (2018) Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chem Rev 118:3251–3304. https://doi.org/10.1021/acs.chemrev.7b00224

    Article  CAS  Google Scholar 

  109. Kim W, Suh CY, Cho SW, Roh KM, Kwon H, Song K, Shon IJ (2012) A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique. Talanta 94:348–352. https://doi.org/10.1016/j.talanta.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  110. Azcona P, Zysler R, Lassalle V (2016) Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloid Surf A 504:320–330. https://doi.org/10.1016/j.colsurfa.2016.05.064

    Article  CAS  Google Scholar 

  111. Che Soh S, mohd yusof M, Abd Rahman Azmi A, Shamsuddin M, Wan Nor WF. (2018) Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts. Malaysian J Anal Sci 22:768–774. https://doi.org/10.17576/mjas-2018-2205-04

    Article  Google Scholar 

  112. Liang Y, Lu WL (2020) Gamma-irradiation synthesis of Fe3O4/rGO nanocomposites as lithium-ion battery anodes. J Mater Sci 31:17075–17083. https://doi.org/10.1007/s10854-020-04268-9

    Article  CAS  Google Scholar 

  113. Sun XH, Zheng CM, Zhang FX, Yang YL, Wu GJ, Yu AM, Guan NJ (2009) Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C 113:16002–16008. https://doi.org/10.1021/jp9038682

    Article  CAS  Google Scholar 

  114. Chang Y, Bai YP, Teng B, Li ZL (2009) A new drug carrier: magnetite nanoparticles coated with amphiphilic block copolymer. Chinese Sci Bull 54:1190–1196. https://doi.org/10.1007/s11434-009-0144-0

    Article  CAS  Google Scholar 

  115. Ziegler-Borowska M, Chelminiak D, Kaczmarek H (2015) Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt. J Therm Anal Calorim 119:499–506. https://doi.org/10.1007/s10973-014-4122-7

    Article  CAS  Google Scholar 

  116. Lesiak B, Rangam N, Jiricek P, Gordeev I, Toth J, Kover L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7:642. https://doi.org/10.3389/fchem.2019.00642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Babick F (2020) Dynamic light scattering (DLS). In: Characterization of nanoparticles. Elsevier: pp 137–172

  118. ISO 22412:2017(E) (2017) Particle size analysis—dynamic light scattering (DLS). In: International Organization for Standardization

  119. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381. https://doi.org/10.1186/1556-276X-8-381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Arévalo-Cid P, Isasi J, Caballero AC, Martín-Hernández F, González-Rubio R (2022) Effects of shell-thickness on the powder morphology, magnetic behavior and stability of the chitosan-coated Fe3O4 nanoparticles. Bol Soc Esp Ceram Vidr 61:300–312. https://doi.org/10.1016/j.bsecv.2020.12.001

    Article  CAS  Google Scholar 

  121. Brookhaven CI (2019) Using dynamic light scattering (DLS) to detect the onset of aggregation as a function of ph of iron oxide nanopowder. In: AZO Materials. https://www.azom.com/article.aspx?ArticleID=18154

  122. Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997. https://doi.org/10.1021/la201652h

    Article  CAS  PubMed  Google Scholar 

  123. Gonzales M, Krishnan KM (2007) Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J Magn Magn Mater 311:59–62. https://doi.org/10.1016/j.jmmm.2006.10.1150

    Article  CAS  Google Scholar 

  124. Baer DR (2020) Guide to making XPS measurements on nanoparticles. J Vac Sci Technol A 38:031201. https://doi.org/10.1116/1.5141419

    Article  CAS  Google Scholar 

  125. Glaria A, Soule S, Hallali N, Ojo WS, Mirjolet M, Fuks G, Cornejo A, Allouche J, Dupin JC, Martinez H, Carrey J, Chaudret B, Delpech F, Lachaize S, Nayral C (2018) Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Adv 8:32146–32156. https://doi.org/10.1039/c8ra06075d

    Article  CAS  PubMed  Google Scholar 

  126. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  127. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  128. Zhang S, Li XY, Chen JP (2010) An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber. J Colloid Interface Sci 343:232–238. https://doi.org/10.1016/j.jcis.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  129. Yau XH, Yew KY, Khe CS, Rajalingam S, Lai CW, Liu WW (2017) Facile one pot synthesis of highly stable L-ascorbic acid coated magnetite nanoparticles dispersion. Dig J Nanomater Bios 12:401–413

    Google Scholar 

  130. Powell CJ, Werner WSM, Kalbe H, Shard AG, Castner DG (2018) Comparisons of analytical approaches for determining shell thicknesses of core-shell nanoparticles by X-ray photoelectron spectroscopy. J Phys Chem 122:4073–4082. https://doi.org/10.1021/acs.jpcc.7b12070

    Article  CAS  Google Scholar 

  131. Baer DR, Wang YC, Castner DG (2016) Use of XPS to quantify thickness of coatings on nanoparticles. Micros Today 24:40–45. https://doi.org/10.1017/S1551929516000109

    Article  PubMed  PubMed Central  Google Scholar 

  132. ISO 19749:2021 (2021) Nanotechnologies—Measurements of particle size and shape distributions by scanning electron microscopy. In: International organization for standardization

  133. Xu WX, Geissman JW, VanderVoo R, Peacor DR (1997) Electron microscopy of iron oxides and implications for the origin of magnetizations and rock magnetic properties of Banded Series rocks of the Stillwater Complex, Montana. J Geophys Res-Sol Ea 102:12139–12157. https://doi.org/10.1029/97jb00303

    Article  CAS  Google Scholar 

  134. Konopka J (2013) Quantitative differentiation of three iron oxides by EDS. Microsc Microanal 19:1046–1047. https://doi.org/10.1017/s1431927613007228

    Article  Google Scholar 

  135. Grant DC, Goudie DJ, Voisey C, Shaffer M, Sylvester P (2018) Discriminating hematite and magnetite via scanning electron microscope-mineral liberation analyzer in the -200 mesh size fraction of iron ores. Appl Earth Sci 127:30–37. https://doi.org/10.1080/03717453.2017.1422334

    Article  CAS  Google Scholar 

  136. Temelie M, Popescu RC, Cocioaba D, Vasile B, Savu D (2018) Biocompatibility study of magnetite nanoparticle synthesized using a green method. Rom J Phys 63:1–13

    Google Scholar 

  137. Ardelean IL, Stoencea LBN, Ficai D, Ficai A, Trusca R, Vasile BS, Nechifor G, Andronescu E (2017) Development of stabilized magnetite nanoparticles for medical applications. J Nanomater 2017:6514659. https://doi.org/10.1155/2017/6514659

    Article  CAS  Google Scholar 

  138. ISO 21363:2020 (2020) Nanotechnologies—Measurements of particle size and shape distributions by transmission electron microscopy. In: International Organization for Standardization

  139. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloid Surf A 262:87–93. https://doi.org/10.1016/j.colsurfa.2005.04.009

    Article  CAS  Google Scholar 

  140. Gupta J, Hassan PA, Barick KC (2021) Core-shell Fe3O4@ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications. AIP Adv 11:025207. https://doi.org/10.1063/9.0000135

    Article  CAS  Google Scholar 

  141. Faaliyan K, Abdoos H, Borhani E, Afghahi SSS (2018) Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior. J Sol-Gel Sci Technol 88:609–617. https://doi.org/10.1007/s10971-018-4847-z

    Article  CAS  Google Scholar 

  142. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29. https://doi.org/10.1021/ja0777584

    Article  CAS  PubMed  Google Scholar 

  143. Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M (2020) Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 52:157–184. https://doi.org/10.1080/03602532.2019.1697282

    Article  PubMed  Google Scholar 

  144. Bhattacharya S (2021) Nanostructures in gene delivery. In: Bajpai AK, Saini RK (eds) Advances in polymeric nanomaterials for biomedical applications. Elsevier, Amsterdam, pp 101–135

    Chapter  Google Scholar 

  145. Ganapathe LS, Mohamed MA, Yunus RM, Berhanuddin DD (2020) Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 6:68. https://doi.org/10.3390/magnetochemistry6040068

    Article  CAS  Google Scholar 

  146. Maity D, Kale SN, Kaul-Ghanekar R, Xue JM, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 321:3093–3098. https://doi.org/10.1016/j.jmmm.2009.05.020

    Article  CAS  Google Scholar 

  147. Zhang L, He R, Gu HC (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617. https://doi.org/10.1016/j.apsusc.2006.05.023

    Article  CAS  Google Scholar 

  148. Zhou L, Ye L, Lu Y (2022) Flexible and effective preparation of magnetic nanoclusters via one-step flow synthesis. Nanomaterials. https://doi.org/10.3390/nano12030350

    Article  PubMed  PubMed Central  Google Scholar 

  149. Circu M, Nan A, Borodi G, Liebscher J, Turcu R (2016) Refinement of magnetite nanoparticles by coating with organic stabilizers. Nanomater 6:1–12. https://doi.org/10.3390/nano6120228

    Article  CAS  Google Scholar 

  150. Epp J (2016) X-ray diffraction (XRD) techniques for materials characterization. In: Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, pp 81–124.

  151. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. https://doi.org/10.3390/molecules18077533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang BY, Wei QF, Qu SL (2013) Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int J Electrochem Sci 8:3786–3793. https://doi.org/10.1016/S1452-3981(23)14431-2

    Article  CAS  Google Scholar 

  153. Tajabadi M, Khosroshahi M (2012) New finding on magnetite particle size reduction by changing temperature and alkaline media concentration. APCBEE Proc 3:140–146. https://doi.org/10.1016/j.apcbee.2012.06.060

    Article  CAS  Google Scholar 

  154. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482. https://doi.org/10.1006/jcis.1998.6053

    Article  CAS  PubMed  Google Scholar 

  155. Nejabat S, Siadat SOR, Tahmasian Z, Mirzajani F, Fatemi F, Hosseinkhani S, Abedi MR (2021) How co-precipitation reaction parameters control the characteristics and features of iron oxide nanoparticles. Phys Chem Res 9:241–252. https://doi.org/10.22036/pcr.2020.251463.1843

    Article  CAS  Google Scholar 

  156. Alibeigi S, Vaezi MR (2008) Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+. Chem Eng Technol 31:1591–1596. https://doi.org/10.1002/ceat.200800093

    Article  CAS  Google Scholar 

  157. Khan US, Khattak NS, Rahman A, Khan F (2011) Optimal method for preparation of magnetite nanoparticles. J Chem Soc Pakistan 33:628–633

    CAS  Google Scholar 

  158. Ishii M, Nakahira M, Yamanaka T (1972) Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Commun 11:209–212. https://doi.org/10.1016/0038-1098(72)91162-3

    Article  CAS  Google Scholar 

  159. Cui HT, Ren WZ, Lin P, Liu Y (2013) Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J Exp Nanosci 8:869–875. https://doi.org/10.1080/17458080.2011.616541

    Article  CAS  Google Scholar 

  160. Roonasi P, Holmgren A (2009) A study on the mechanism of magnetite formation based on iron isotope fractionation. Epd Cong 25:829–836

    Google Scholar 

  161. Ercuta A, Chirita M (2013) Highly crystalline porous magnetite and vacancy-ordered maghemite microcrystals of rhombohedral habit. J Cryst Growth 380:182–186. https://doi.org/10.1016/j.jcrysgro.2013.06.003

    Article  CAS  Google Scholar 

  162. Nasrazadani S (1997) The application of infrared spectroscopy to a study of phosphoric and tannic acids interactions with magnetite (Fe3O4), goethite (α-FEOOH) and lepidocrocite (γ-FeOOH). Corros Sci 39:1845–1859. https://doi.org/10.1016/s0010-938x(97)00060-7

    Article  CAS  Google Scholar 

  163. Li YS, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550. https://doi.org/10.1016/j.jmmm.2011.11.065

    Article  CAS  Google Scholar 

  164. Žic M, Ristić M, Musić S (2011) Monitoring the hydrothermal precipitation of α-Fe2O3 from concentrated Fe(NO3)3 solutions partially neutralized with NaOH. J Mol Struct 993:115–119. https://doi.org/10.1016/j.molstruc.2010.09.048

    Article  CAS  Google Scholar 

  165. Nangah CR, Merlain TG, Nsami NJ, Tubwoh CP, Foba-Tendo J, Mbadcam KJ (2019) Synthesized goethite and natural iron oxide as effective absorbents for simultaneous removal of Co(II) and Ni(II) ions from water. J Encapsulation Adsorpt Sci 09:127–147. https://doi.org/10.4236/jeas.2019.93007

    Article  CAS  Google Scholar 

  166. Veneranda M, Aramendia J, Bellot-Gurlet L, Colomban P, Castro K, Madariaga JM (2018) FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros Sci 133:68–77. https://doi.org/10.1016/j.corsci.2018.01.016

    Article  CAS  Google Scholar 

  167. López J, González F, Bonilla F, Zambrano G, Gomez M (2010) Synthesis and characterization of Fe3O4 magnetic nanofluid. Rev LatinAm Metal 30:60–66

    Google Scholar 

  168. Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR (2014) Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int 2014:705068. https://doi.org/10.1155/2014/705068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zheng L, Su W, Qi Z, Xu Y, Zhou M, Xie Y (2011) First-order metal-insulator transition and infrared identification of shape-controlled magnetite nanocrystals. Nanotechnol 22:485706. https://doi.org/10.1088/0957-4484/22/48/485706

    Article  CAS  Google Scholar 

  170. Sarma L, Borah JP, Srinivasan A, Sarma S (2020) Synthesis and characterization of tea polyphenol-coated magnetite nanoparticles for hyperthermia application. J Supercond Nov Magn 33:1637–1644. https://doi.org/10.1007/s10948-019-05189-3

    Article  CAS  Google Scholar 

  171. Maleki A, Azizi M, Emdadi Z (2018) A novel poly(ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem Lett Rev 11:573–582. https://doi.org/10.1080/17518253.2018.1547795

    Article  CAS  Google Scholar 

  172. Jin XD, Zhang KY, Sun J, Wang J, Dong ZP, Li R (2012) Magnetite nanoparticles immobilized Salen Pd (II) as a green catalyst for Suzuki reaction. Catal Commun 26:199–203. https://doi.org/10.1016/j.catcom.2012.05.026

    Article  CAS  Google Scholar 

  173. Kazemzadeh H, Ataie A, Rashchi F (2012) Synthesis of magnetite nano-particles by reverse co-precipitation. Int J Mod Phys: Conf 05:160–167. https://doi.org/10.1142/s2010194512001973

    Article  CAS  Google Scholar 

  174. Xie WL, Xiong YF, Wang HY (2021) Fe3O4-poly(AGE-DVB-GMA) composites immobilized with guanidine as a magnetically recyclable catalyst for enhanced biodiesel production. Renew Energ 174:758–768. https://doi.org/10.1016/j.renene.2021.04.086

    Article  CAS  Google Scholar 

  175. Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Khaniabadi PM, Mehrdel B (2020) Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Sci Rep 10:10793. https://doi.org/10.1038/s41598-020-67869-8

    Article  CAS  PubMed  Google Scholar 

  176. Fan GY, Ren YL, Jiang WD, Wang CY, Xu B, Liu F (2014) Effective catalytic hydrodechlorination of 4-chlorophenol over a Rh immobilized on amine-functionalized magnetite nanoparticles in aqueous phase. Catal Commun 52:22–25. https://doi.org/10.1016/j.catcom.2014.04.006

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, grant number PD67/2020, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Doukeh.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifoi, A.R., Matei, E., Râpă, M. et al. Coprecipitation nanoarchitectonics for the synthesis of magnetite: a review of mechanism and characterization. Reac Kinet Mech Cat 136, 2835–2874 (2023). https://doi.org/10.1007/s11144-023-02514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02514-9

Keywords

Navigation