Skip to main content
Log in

Magnetite Nanoparticle Co-precipitation Synthesis, Characterization, and Applications: Mini Review

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (MNP) are nowadays considered a real wealth to the enormously developing world owing to the several characteristics they pose. In addition to the shared nanofeatures, superparamagnetism facilitates repetitive use for several rounds. Synthesis of MNPs was accomplished through plenty of methods using different iron precursors and reaction conditions with different surface modifications so as to obtain monodispersity and superparamagnetism in a diameter less than 30 nm. Among them, coprecipitation was found to be the easiest way for MNP synthesis. The synthesized MNPs have been used for different applications including biochemical as well as biomedical aspects. This mini review provides a brief report of synthesis of MNPs using coprecipitation approach along with the most employed characterization techniques. Moreover, safety and biomedical and biochemical applications were also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AFM:

atomic force microscopy

CT:

computed tomography

DLS:

dynamic light scattering

ELISA:

enzyme-linked immunosorbent assay

FTIR:

Fourier transform infrared

MNPs:

magnetic nanoparticles

MPI:

magnetic particle imaging

MRI:

magnetic resonance imaging

PET:

positron emission tomography

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

VSM:

vibrational-sample magnetometer

XRD:

X-ray diffraction

References

  1. Cardoso, V. F., Francesko, A., Ribeiro, C., Bañobre-López, M., Martins, P., & Lanceros-Mendez, S. (2018). Advances in magnetic nanoparticles for biomedical applications. Advanced Healthcare Materials, 7. https://doi.org/10.1002/adhm.201700845

  2. Zhang, Q., Yang, X., & Guan, J. (2019). Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Applied Nano Materials, 2, 4681–4697. https://doi.org/10.1021/acsanm.9b00976

    Article  Google Scholar 

  3. Liu, S., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in Colloid and Interface Science, 281, 102165. https://doi.org/10.1016/j.cis.2020.102165

    Article  Google Scholar 

  4. Kritika, R. I. (2022). Therapeutic applications of magnetic nanoparticles: recent advances. Materials Advances, 3, 7425–7444. https://doi.org/10.1039/D2MA00444E

    Article  Google Scholar 

  5. Shen, L., Qiao, Y., Guo, Y., Meng, S., Yang, G., Wu, M., et al. (2014). Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceramics International, 40, 1519–1524.

    Article  Google Scholar 

  6. Lemine, O. M., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A., et al. (2012). Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices and Microstructures, 52, 793–799.

    Article  Google Scholar 

  7. Li, J., Shi, X., & Shen, M. (2014). Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Particle & Particle Systems Characterization, 31, 1223–1237.

    Article  Google Scholar 

  8. Paiva, D. L., Andrade, A. L., Pereira, M. C., Fabris, J. D., Domingues, R. Z., & Alvarenga, M. E. (2015). Novel protocol for the solid-state synthesis of magnetite for medical practices. Hyperfine Interactions, 232, 19–27.

    Article  Google Scholar 

  9. Chin, S. F., Pang, S. C., & Tan, C. H. (2011). Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape. Journal of Materials and Environmental Science, 2, 299–302.

    Google Scholar 

  10. Luo, Y., Yang, J., Yan, Y., Li, J., Shen, M., Zhang, G., et al. (2015). RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T 1-weighted MR imaging of gliomas. Nanoscale, 7, 14538–14546.

    Article  Google Scholar 

  11. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38, 545–560.

    Article  Google Scholar 

  12. Yew, Y. P., Shameli, K., Miyake, M., Ahmad Khairudin, N. B. B., Mohamad, S. E. B., Naiki, T., et al. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arabian Journal of Chemistry, 13, 2287–2308. https://doi.org/10.1016/j.arabjc.2018.04.013

    Article  Google Scholar 

  13. Kandpal, N. D., Sah, N., Loshali, R., Joshi, R., Prasad, J. (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles.

  14. Hui, B. H., & Salimi, M. N. (2020). Production of iron oxide nanoparticles by co-precipitation method with optimization studies of processing temperature, pH and stirring rate. IOP Conference Series: Materials Science and Engineering, 743, 012036. https://doi.org/10.1088/1757-899X/743/1/012036

    Article  Google Scholar 

  15. Lavorato, G. C., de Almeida, A. A., Vericat, C., & Fonticelli, M. H. (2023). Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. Nanotechnology, 34, 192001.

    Article  Google Scholar 

  16. Ferreira, L. P., Reis, C. P., Robalo, T. T., Melo Jorge, M. E., Ferreira, P., Gonçalves, J., et al. (2022). Assisted synthesis of coated iron oxide nanoparticles for magnetic hyperthermia. Nanomaterials, 12, 1870.

    Article  Google Scholar 

  17. Kovář, D., Malá, A., Mlčochová, J., Kalina, M., Fohlerová, Z., Hlaváček, A., et al. (2017). Preparation and characterisation of highly stable iron oxide nanoparticles for magnetic resonance imaging. Journal of Nanomaterials, 2017, e7859289. https://doi.org/10.1155/2017/7859289

    Article  Google Scholar 

  18. Montes-Hernandez, G., Findling, N., & Renard, F. (2021). Direct and indirect nucleation of magnetite nanoparticles from solution revealed by time-resolved Raman spectroscopy. Crystal Growth & Design, 21, 3500–3510. https://doi.org/10.1021/acs.cgd.1c00282

    Article  Google Scholar 

  19. Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B, 177, 421–427. https://doi.org/10.1016/j.mseb.2012.01.003

    Article  Google Scholar 

  20. Yazid, N. A., & Joon, Y. C. (2019). Co-precipitation synthesis of magnetic nanoparticles for efficient removal of heavy metal from synthetic wastewater, Penang, Malaysia (p. 020019). https://doi.org/10.1063/1.5117079

    Book  Google Scholar 

  21. Daoush, W. M. (2017). Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. Journal of Nanomedicine Research, 5, 00118.

    Google Scholar 

  22. Besenhard, M. O., LaGrow, A. P., Hodzic, A., Kriechbaum, M., Panariello, L., Bais, G., et al. (2020). Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chemical Engineering Journal, 399, 125740. https://doi.org/10.1016/j.cej.2020.125740

    Article  Google Scholar 

  23. Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W., & Mahmoudi, E. (2022). Synthesis of Fe3O4 nanoparticles with different shapes through a co-precipitation method and their application. JOM, 74, 3531–3539. https://doi.org/10.1007/s11837-022-05380-3

    Article  Google Scholar 

  24. Dheyab, M. A., Aziz, A. A., Jameel, M. S., Noqta, O. A., Khaniabadi, P. M., & Mehrdel, B. (2020). Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Scientific Reports, 10, 10793. https://doi.org/10.1038/s41598-020-67869-8

    Article  Google Scholar 

  25. Macías-Martínez, B. I., Cortés-Hernández, D. A., Zugasti-Cruz, A., Cruz-Ortíz, B. R., Múzquiz-Ramos, E. M., Macías-Martínez, B. I., et al. (2016). Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. Journal of Applied Research and Technology, 14, 239–244. https://doi.org/10.1016/j.jart.2016.05.007

    Article  Google Scholar 

  26. Wardani, R. K., Dahlan, K., Wahyudi, S. T., & Sukaryo, S. G. (2019). Synthesis and characterization of nanoparticle magnetite for biomedical application, Surakarta, Indonesia (p. 020137). https://doi.org/10.1063/1.5139869

    Book  Google Scholar 

  27. Ramadan, I., Moustafa, M. M., & Nassar, M. Y. (2022). Facile controllable synthesis of magnetite nanoparticles via a co-precipitation approach. Egyptian Journal of Chemistry, 65, 59–65. https://doi.org/10.21608/ejchem.2022.116869.5284

    Article  Google Scholar 

  28. Rao, M. S., Rao, C. S., & Kumari, A. S. (2022). Synthesis, stability, and emission analysis of magnetite nanoparticle-based biofuels. Journal of Engineering and Applied Science, 69, 1–38. https://doi.org/10.1186/s44147-022-00127-y

    Article  Google Scholar 

  29. Fatima, H., Lee, D.-W., Yun, H. J., & Kim, K.-S. (2018). Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Advances, 8, 22917–22923. https://doi.org/10.1039/C8RA02909A

    Article  Google Scholar 

  30. Sandler, S. E., Fellows, B., & Mefford, O. T. (2019). Best practices for characterization of magnetic nanoparticles for biomedical applications. Analytical Chemistry, 91, 14159–14169. https://doi.org/10.1021/acs.analchem.9b03518

    Article  Google Scholar 

  31. Hasany, S. F., Abdurahman, N. H., Sunarti, A. R., & Jose, R. (n.d.). Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Current Nanoscience, 9, 561–575.

  32. Attia, N. F., El-Monaem, E. M. A., El-Aqapa, H. G., Elashery, S. E. A., Eltaweil, A. S., El Kady, M., et al. (2022). Iron oxide nanoparticles and their pharmaceutical applications. Applied Surface Science Advances, 11, 100284. https://doi.org/10.1016/j.apsadv.2022.100284

    Article  Google Scholar 

  33. Honecker, D., Bersweiler, M., Erokhin, S., Berkov, D., Chesnel, K., Alba Venero, D., et al. (2022). Using small-angle scattering to guide functional magnetic nanoparticle design. Nanoscale Advances, 4, 1026–1059. https://doi.org/10.1039/D1NA00482D

    Article  Google Scholar 

  34. Khan, F., Mujawar, M., Khalid, M., Walvekar, R., Abdullah, E., Mazari, S., et al. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27. https://doi.org/10.1007/s11356-020-08711-6

  35. Ali, M. M. M., & Majeed, Y. R. A. (2022). Synthesis and characterization of magnetic Fe3O4@SiO2 core/shell nanocomposite. AIP Conference Proceedings, 2450, 020010. https://doi.org/10.1063/5.0093462

    Article  Google Scholar 

  36. Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods in Molecular Biology, 1570, 47–71. https://doi.org/10.1007/978-1-4939-6840-4_4

    Article  Google Scholar 

  37. Martins, P. M., Lima, A. C., Ribeiro, S., Lanceros-Mendez, S., & Martins, P. (2021). Magnetic nanoparticles for biomedical applications: from the soul of the earth to the deep history of ourselves. ACS Applied Bio Materials, 4, 5839–5870. https://doi.org/10.1021/acsabm.1c00440

    Article  Google Scholar 

  38. Tay, Z. W., Chandrasekharan, P., Chiu-Lam, A., Hensley, D. W., Dhavalikar, R., Zhou, X. Y., et al. (2018). Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano, 12, 3699–3713.

    Article  Google Scholar 

  39. de la Encarnación, C., Jimenez de Aberasturi, D., & Liz-Marzán, L. M. (2022). Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Advanced Drug Delivery Reviews, 189, 114484. https://doi.org/10.1016/j.addr.2022.114484

    Article  Google Scholar 

  40. Allafchian, A., & Hosseini, S. S. (2019). Antibacterial magnetic nanoparticles for therapeutics: a review. IET Nanobiotechnology, 13, 786–799. https://doi.org/10.1049/iet-nbt.2019.0146

    Article  Google Scholar 

  41. Ozvural Sertcelik, K. N., Karaman, O., Almammadov, T., Gunbas, G., Kolemen, S., Yagci Acar, H., et al. (2022). Superior photodynamic therapy of colon cancer cells by selenophene-BODIPY-loaded superparamagnetic iron oxide nanoparticles. ChemPhotoChem, 6, e202200104. https://doi.org/10.1002/cptc.202200104

    Article  Google Scholar 

  42. Dasari, A., Xue, J., & Deb, S. (2022). Magnetic nanoparticles in bone tissue engineering. Nanomaterials, 12, 757. https://doi.org/10.3390/nano12050757

    Article  Google Scholar 

  43. Włodarczyk, A., Gorgoń, S., Radoń, A., & Bajdak-Rusinek, K. (2022). Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: challenges and perspectives. Nanomaterials, 12, 1807. https://doi.org/10.3390/nano12111807

    Article  Google Scholar 

  44. kianfar E. (2021). Magnetic nanoparticles in targeted drug delivery: a review. Journal of Superconductivity and Novel Magnetism, 34, 1709–1735. https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  45. Gauger, A. J., Hershberger, K. K., & Bronstein, L. M. (2020). Theranostics based on magnetic nanoparticles and polymers: intelligent design for efficient diagnostics and therapy. Frontiers. Chemistry, 8.

  46. Schwaminger, S. P., Fraga-García, P., Blank-Shim, S. A., Straub, T., Haslbeck, M., Muraca, F., et al. (2019). Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles. ACS Omega, 4, 3790–3799.

    Article  Google Scholar 

  47. Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T., & Mahmoud, Y. A. (2020). Chapter twenty - enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In C. V. Kumar (Ed.), Methods in Enzymology (Vol. 630, pp. 481–502). Academic Press. https://doi.org/10.1016/bs.mie.2019.11.006

    Chapter  Google Scholar 

  48. Golchin, J., Golchin, K., Alidadian, N., Ghaderi, S., Eslamkhah, S., Eslamkhah, M., et al. (2017). Nanozyme applications in biology and medicine: an overview. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1069–1076. https://doi.org/10.1080/21691401.2017.1313268

    Article  Google Scholar 

  49. Mukherjee, A., Richtera, L., Adam, V., & Ashrafi, A. (2022). Chapter 11 - role of magnetic nanoparticles in development of biosensors for viral infection diagnostics. In R. Khan, A. Parihar, A. Kaushik, & A. Kumar (Eds.), Advanced Biosensors for Virus Detection (pp. 189–202). Academic Press. https://doi.org/10.1016/B978-0-12-824494-4.00002-3

    Chapter  Google Scholar 

  50. Salek Maghsoudi, A., Hassani, S., Mirnia, K., & Abdollahi, M. (2021). Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. International Journal of Nanomedicine, 16, 803–832. https://doi.org/10.2147/IJN.S294417

    Article  Google Scholar 

  51. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today, 2, 22–32. https://doi.org/10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  52. Das, C., Singh, S., Bhakta, S., Mishra, P., & Biswas, G. (2022). Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater. Chemosphere, 291, 132673. https://doi.org/10.1016/j.chemosphere.2021.132673

    Article  Google Scholar 

  53. Das, C., Sen, S., Singh, T., Ghosh, T., Paul, S. S., Kim, T. W., et al. (2020). Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials, 10, 1615. https://doi.org/10.3390/nano10081615

    Article  Google Scholar 

  54. Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8. https://doi.org/10.1007/s13205-018-1286-z

  55. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 3, 397–415.

    Article  Google Scholar 

  56. Malhotra, N., Lee, J.-S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T.-R., et al. (2020). Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules, 25. https://doi.org/10.3390/molecules25143159

Download references

Author information

Authors and Affiliations

Authors

Contributions

HA has conceptualized and revised the manuscript thoroughly, VY wrote the chemical applications, WA wrote the biomedical and safety issue, LA wrote the synthesis section. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Haitham Al-Madhagi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Madhagi, H., Yazbik, V., Abdelwahed, W. et al. Magnetite Nanoparticle Co-precipitation Synthesis, Characterization, and Applications: Mini Review. BioNanoSci. 13, 853–859 (2023). https://doi.org/10.1007/s12668-023-01113-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01113-1

Keywords

Navigation