Skip to main content
Log in

Enhanced photocatalytic degradation of Rhodamine B by (Mg/Ta): doped Bi4Ti3O12 catalyst under sunlight irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

(Mg/Ta) was incorporated into Bi4Ti3O12 (BTO) crystals in this research to improve their photocatalytic activity in the degradation of organic contaminants. The (Mg/Ta)-modified BTO photocatalyst was synthesized using the molten salt (MS) process. X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray energy dispersive spectra (EDS), Brunauer–Emmett–Teller (BET) surface area analysis and UV–vis optical absorption spectra were used to identify the crystal structures, morphologies, surface structures, and optical absorption functionality of the sample. As a model organic pollutant, Rhodamine B (RhB) dye solution was utilized to investigate the impact of contamination (Mg/Ta) on photocatalytic activity under solar irradiation. With a calculated rate constant of kapp = 0.03095 ± 0.00717 min−1, the photocatalytic degradation rate of RhB using the (Mg/Ta)-BTO catalyst was found to be 90% over a reduced time period of 90 min. The improved photocatalytic mechanism of (Mg/Ta)-BTO photocatalyst has been suggested and investigated, and encouraging results have been obtained in the environmental field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  2. Farias T, Hajizadeh S, Ye L (2020) Cryogels with high cisplatin adsorption capacity: towards removal of cytotoxic drugs from wastewater. Sep Purif Technol 235:116203–116203

    Article  CAS  Google Scholar 

  3. Pronk W, Ding A, Morgenroth E, Derlon N, Desmond P, Burkhardt M, Wu B, Fane AG (2019) Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Res 149:553–565

    Article  CAS  PubMed  Google Scholar 

  4. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389

    Article  CAS  Google Scholar 

  5. Choi J, Lee H, Choi Y, Kim S, Lee S, Lee S, Lee J (2014) Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: effects of wastewater effluent matrix and catalyst modifications. Appl Catal B 147:8–16

    Article  CAS  Google Scholar 

  6. Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhang F, Yang Z, Xue H, Dionysiou DD (2016) Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride. J Catal 344:692–700

    Article  CAS  Google Scholar 

  8. Ye Y, Yang H, Li R, Wang X (2017) Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J Sol-Gel Sci Technol 82:509–518

    Article  CAS  Google Scholar 

  9. Li J, Wang S, Sun G, Gao H, Yu X, Tang S, Wei Y (2021) Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater Today Chem 19:100390–100390

    Article  CAS  Google Scholar 

  10. Luo W, Cao W, Bruijnincx PC, Lin L, Wang A, Zhang T (2019) Zeolite- supported metal catalysts for selective hydrodeoxygenation of biomass- derived platform molecules. Green Chem 21(14):3744–3768

    Article  CAS  Google Scholar 

  11. Cheng T, Gao H, Liu G, Pu Z, Wang S, Yi Z, Yang H (2022) Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr (VI) ions. Colloids Surf A 633:127918

    Article  CAS  Google Scholar 

  12. Liu Y, Zhang MY, Li L, Zhang XT (2014) One-dimensional visible-light- driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frame- works and Bi2XO6 (X = Mo, W) nanosheets. Appl Catal B 160:757–766

    Article  Google Scholar 

  13. Liu YB, Zhu GQ, Gao JZ, Hojamberdiev M, Lu HB, Zhu RL, Wei XM, Liu P (2016) A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A. J Alloys Compd 688:487–496

    Article  CAS  Google Scholar 

  14. He HQ, Yin J, Li YX, Zhang Y, Qiu HS, Xu JB, Xu T, Wang CY (2014) Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with 001 facets toward enhanced visible-light- driven photocatalytic activities. Appl Catal B 156:35–43

    Article  Google Scholar 

  15. Hao W, Gao Y, Jing X, Zou W, Chen Y, Wang T (2014) Visible light pho- tocatalytic properties of metastable γ-Bi2O3 with different morphologies. J Mater Sci Technol 30(2):192–196

    Article  CAS  Google Scholar 

  16. Yan Y, Yang H, Zhao X, Li R, Wang X (2018) Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater Res Bull 105:286–290

    Article  CAS  Google Scholar 

  17. Feng H, Xu Z, Wang L, Yu Y, Mitchell D, Cui D, Dou XS (2015) Modulation of photocatalytic properties by strain in 2D BiOBr nanosheets. ACS Appl Mater Interfaces 7(50):27592–27596

    Article  CAS  PubMed  Google Scholar 

  18. Di L, Yang H, Xian T, Chen X (2017) Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials 10(10):1118–1118

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599

    Article  CAS  Google Scholar 

  20. Han C, Liu J, Yang W, Wu Q, Yang H, Xue X (2017) Photocatalytic activity of CaTiO3 synthesized by solid state, sol-gel and hydrothermal methods. J Sol-Gel Sci Technol 81:806–813

    Article  CAS  Google Scholar 

  21. da Silva LF, Lopes OF, de Mendonça VR, Carvalho KTG, Longo E, Ribeiro C, Mastelaro VR (2016) An understanding of the photocatalytic properties and pollutant degradation mechanism of SrTiO3 nanoparticles. Photochem Photobiol 92(3):371–378

    Article  PubMed  Google Scholar 

  22. Qian K, Jiang Z, Shi H, Wei W, Zhu C, Xie J (2016) Constructing mesoporous Bi4Ti3O12 with enhanced visible light photocatalytic activity. Mater Lett 183:303–306

    Article  CAS  Google Scholar 

  23. Zheng C, Yang H (2018) Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J Mater Sci: Mater Electron 29:9291–9300

    CAS  Google Scholar 

  24. Hervoches CH, Lightfoot P (1999) A variable-temperature powder neutron diffraction study of ferroelectric Bi4Ti3O12. Chem Mater 11(11):3359–3364

    Article  CAS  Google Scholar 

  25. Yao WF, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Huang BB (2004) Photocatalytic property of perovskite bismuth titanate. Appl Catal B 52(2):109–116

    Article  CAS  Google Scholar 

  26. Li X, Ju Z, Li F, Huang Y, Xie Y, Fu Z, Lu Y (2014) Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J Mater Chem A 2(33):13366–13372

    Article  CAS  Google Scholar 

  27. Simoes AZ, Stojanovic BD, Ramirez MA, Cavalheiro AA, Longo E, Varela JA (2008) Lanthanum-doped Bi4Ti3O12 prepared by the soft chemical method: rietveld analysis and piezoelectric properties. Ceram Int 34:257–261

    Article  CAS  Google Scholar 

  28. Hou JQ, Cao R, Wang Z, Jiao SQ, Zhu HM (2011) Chromium-doped bismuth titanate nanosheets as enhanced visible-light photocatalysts with a high percentage of reactive 110 facets. J Mater Chem 21:7296–7301

    Article  CAS  Google Scholar 

  29. Yao WF, Wang H, Shang SX, Xu XH, Yang XN, Zhang Y, Wang M (2003) Photocatalytic property of Zn-modified bismuth titanate. J Mol Catal A 198:343–348

    Article  CAS  Google Scholar 

  30. Lin X, Guan Q, Zou C, Liu T, Zhang Y, Liu C, Zhai H (2013) Photocatalytic degradation of an azo dye using Bi3.25M0.75Ti3O12 nanowires (M= La, Sm, Nd, and Eu). Mater Sci Eng B 178(8):520–526

    Article  CAS  Google Scholar 

  31. Liu YB, Zhu GQ, Gao JZ, Hojamberdiev M, Zhu RL, Wei XM, Guo QM, Liu P (2017) Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3þ- doping and the addition of Au nanoparticles: photodegradation of phenol and bisphenol A. Appl Catal B 200:72–82

    Article  CAS  Google Scholar 

  32. Kimura T, Yamaguchi T (1983) Fused salt synthesis of Bi4Ti3O12. Ceram Int 9(1):13–17

    Article  CAS  Google Scholar 

  33. Shannon RD (1976) Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767

    Article  Google Scholar 

  34. Menasra H, Bounab K, Necira Z, Meklid A, Boutarfaia A, (2020) Effect of the synthesis route on the structural, morphological and dielectric properties of Bi4(Ni2/3, Ta1/3)0.08Ti2.92O12 aurivillius phases. Int J Thin Film Sci Technol 9(3):181–188

    Article  Google Scholar 

  35. Cheng TT, Gao WH, Gao HJ, Wang SF, Yi Z, Wang XX, Yang H (2021) Piezocatalytic degradation of methylene blue, tetrabromobisphenol A and tetracycline hydrochloride using Bi4Ti3O12 with different morphologies. Mater Res Bull 141:111350–111350

    Article  CAS  Google Scholar 

  36. Li H, Liu B, Yin S, Sato T, Wang Y (2015) Visible light-driven photo- catalytic activity of oleic acid-coated TiO2 nanoparticles synthesized from absolute ethanol solution. Nanoscale Res Lett 10(1):415–415

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chelbi S, Djouadi D, Chelouche A, Hammiche L, Touam T, Doghmane A (2020) Effects of Ti-precursor concentration and annealing tempera- ture on structural and morphological properties of TiO2 nano-aero-gels synthesized in supercritical ethanol. SN Appl Sci 2:872

    Article  CAS  Google Scholar 

  38. Yao Z, Chu R, Xu Z (2016) Enhanced electrical properties of (Li, Ce) co-doped Sr (Na0.5Bi0.5) Bi4Ti5O18 high temperature piezoceramics. RSC Adv 6(40):33387–33392

    Article  CAS  Google Scholar 

  39. Yu L, Hao J, Xu Z (2016) Strong red emission and enhanced ferroelectric properties in (Pr, Ce)-modified Na0.5Bi4.5Ti4O15 multifunctional ceramics. J Mater Sci: Mater Electron 27(11):12216–12221

    CAS  Google Scholar 

  40. Chou X, Zhai J, Jiang H (2007) Dielectric properties and relaxorbehavior of rare earth. J Appl Phys 102(8):84106–84106

    Article  Google Scholar 

  41. Kan Y, Jin X, Wang P, Li Y, Cheng YB, Yan D (2003) Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Mater Res Bull 38(4):567–576

    Article  CAS  Google Scholar 

  42. Ben Khetta O, Attaf A, Derbali A, Saidi H, Bouhdjer A, Aida MS, Ben Khetta Y, Messemeche R, Nouadji R, Rahmane S, Djehiche EN (2022) Precursor concentration effect on the physical properties of transparent titania (anatase-TiO2) thin films grown by ultrasonic spray process for optoelectronics application. Opt Mater 132:112790–112790

    Article  CAS  Google Scholar 

  43. Liu Y, Zhu G, Peng J, Gao J, Wang C, Liu P (2017) One-step molten-salt method fabricated Bi2Ti2O7/Bi4Ti3O12 composites with enhanced photocatalytic activity. J Mater Sci: Mater Electron 28:2172–2182

    CAS  Google Scholar 

  44. Chen Z, Jiang H, Jin W, Shi C (2016) Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed 0 0 1 facets for Rhodamine B degradation. Appl Catal B 180:698–706

    Article  CAS  Google Scholar 

  45. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  46. Zheng C (2017) A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res Lett 12:1–12

    Article  Google Scholar 

  47. Cheng T, Sun X, Xian T, Yi Z, Li R, Wang X, Yang H (2021) Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi4Ti3O12 architectures and their application for photodegradation of simulated dye wastewater. Opt Mater 112:110781–110781

    Article  CAS  Google Scholar 

  48. Chen C, Zhao W, Lei P, Zhao J, Serpone N (2004) Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry- Eur J 10(8):1956–1965

    Article  CAS  Google Scholar 

  49. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham

    Book  Google Scholar 

  50. Zhao X, Yang H, Li S, Cui Z, Zhang C (2018) Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater Res Bull 107:180–188

    Article  CAS  Google Scholar 

  51. Gaya UI (2014) Principles of heterogeneous photocatalysis, heterogeneous photocatalysis using inorganic semiconductor solids. Springer, Dordrecht

    Book  Google Scholar 

  52. Imoberdorf G, Irazoqui HA, Cassano AE, Alfano OM (2005) Photocatalytic degradation of tetrachloroethylene in gas phase on TiO2 films: a kinetic study. J Ind Eng Chem Res 44(16):6075–6085

    Article  CAS  Google Scholar 

  53. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Photocatalysis: a promising route for 21st century organic chemistry. J Chem Commun 33:3425–3437

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pr. Mohamed Toufik Soltani, of Photonic physics and multifunctional nanomaterials-Biskra (Algeria), and CRAPC Laghouat (Algeria) for its cooperation in characterization measurements. We would also like to thank Ben Machiche Hayet (Laboratory of chemistry-biskra, Algeria) for his invaluable assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhdar Smaili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaili, L., Menasra, H., Benbrika, C. et al. Enhanced photocatalytic degradation of Rhodamine B by (Mg/Ta): doped Bi4Ti3O12 catalyst under sunlight irradiation. Reac Kinet Mech Cat 136, 3257–3269 (2023). https://doi.org/10.1007/s11144-023-02485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02485-x

Keywords

Navigation