Skip to main content
Log in

Kinetic evaluation for the reaction of hydroxylamine with acetamide using online infrared spectra and pH profile analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the reaction of hydroxylamine with acetamide to acetohydroxamic acid was carried out at different temperatures, and the complete reaction processes were monitored using online infrared spectroscopy and pH probe. Regarding the reaction as first-order for both reactants, the obtained experimental data were fitted to evaluate kinetic parameters, including the second-order rate constant k of the reaction at different temperatures, and the activation energy EA. It was found that when fitting online infrared spectral data, the traditional hard-modeling method was not able to obtain reasonable evaluated values of kinetic parameters due to the influence of rotation ambiguity. In this study, spectral similarity was innovatively applied to restrain the rotational ambiguity during IR spectra fitting and has achieved favorable effects. The values of the apparent dissociation constants of weak acidic or basic substances in the reaction model were additionally evaluated during online pH profile fitting. In addition, a multi-objective optimization method, NSGA-II, was also carried out to fit online IR spectra and pH profile simultaneously. The EA evaluation results obtained by the three mentioned methods were similar, with values of 85.10, 84.48, and 83.72 kJ mol−1, while the multi-objective optimization method provided evaluation results for the rate constant k with the smallest relative standard deviation (maximum 5.72%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sánchez-García I, Bonales LJ, Galán H et al (2019) Spectroscopic study of acetohydroxamic acid (AHA) hydrolysis in the presence of europium. implications in the extraction system studies for lanthanide and actinide separation. New J Chem 43:15714–15722. https://doi.org/10.1039/C9NJ03360B

    Article  Google Scholar 

  2. Bracher BH, Small RWH (1970) The crystal structure of acetohydroxamic acid hemihydrate. Acta Crystallogr B Struct Sci 26:1705–1709. https://doi.org/10.1107/S0567740870004764

    Article  CAS  Google Scholar 

  3. LeBlond C, Wang J, Larsen R, Orella C, Sun Y-K (1998) A combined approach to characterization of catalytic reactions using in situ kinetic probes. Top Catal 5:149–158. https://doi.org/10.1023/A:1019149919423

    Article  CAS  Google Scholar 

  4. Blackmond DG (2005) Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew Chem Int Ed 44:4302–4320. https://doi.org/10.1002/anie.200462544

    Article  CAS  Google Scholar 

  5. Tomazett VK, Santos WG, Lima-Neto BS (2017) Infrared spectroscopy as an effective tool in ring-opening metathesis polymerization: monitoring the polymerization kinetics of norbornene with amine-based Ru catalysts in real time. Reac Kinet Mech Cat 120:663–672. https://doi.org/10.1007/s11144-017-1147-5

    Article  CAS  Google Scholar 

  6. Liu Y-C, Huang A-C, Tang Y et al (2022) Thermokinetic analysis of the stability of acetic anhydride hydrolysis in isothermal calorimetry techniques. J Therm Anal Calorim 147:7865–7873. https://doi.org/10.1007/s10973-021-11065-x

    Article  CAS  Google Scholar 

  7. Bezemer E, Rutan S (2002) Resolution of overlapped NMR spectra by two-way multivariate curve resolution alternating least squares with imbedded kinetic fitting. Anal Chim Acta 459:277–289. https://doi.org/10.1016/S0003-2670(02)00116-2

    Article  CAS  Google Scholar 

  8. Schwolow S, Braun F, Rädle M et al (2015) Fast and efficient acquisition of kinetic data in microreactors using in-line Raman analysis. Org Process Res Dev 19:1286–1292. https://doi.org/10.1021/acs.oprd.5b00184

    Article  CAS  Google Scholar 

  9. Zakarianezhad M, Habibi-Khorassani M, Khajehali Z et al (2014) Mechanistic investigation of the reaction between triphenylphosphine, dialkyl acetylenedicarboxylates and pyridazinone: a theoretical, NMR and kinetic study. Reac Kinet Mech Cat 111:461–474. https://doi.org/10.1007/s11144-013-0653-3

    Article  CAS  Google Scholar 

  10. Chung R, Hein JE (2017) The more, the better: simultaneous in situ reaction monitoring provides rapid mechanistic and kinetic insight. Top Catal 60:594–608. https://doi.org/10.1007/s11244-017-0737-9

    Article  CAS  Google Scholar 

  11. Marcel M, Zuberbuehler AD (1990) Nonlinear least-squares fitting of multivariate absorption data. Anal Chem 62:2220–2224. https://doi.org/10.1021/ac00219a013

    Article  Google Scholar 

  12. Bugnon P, Chottard J-C, Jestin J-L, Jung B, Laurenczy G, Maeder M, Merbach AE, Zuberbühler AD (1994) Second-order globalisation for the determination of activation parameters in kinetics. Anal Chim Acta 298:193–201. https://doi.org/10.1016/0003-2670(94)00255-X

    Article  CAS  Google Scholar 

  13. de Juan A, MaederMartı́nezTauler MMR (2000) Combining hard- and soft-modelling to solve kinetic problems. Chemom Intell Lab Syst 54:123–141. https://doi.org/10.1016/S0169-7439(00)00112-X

    Article  Google Scholar 

  14. Fath V, Lau P, Greve C, Kockmann N, Röder T (2020) Efficient kinetic data acquisition and model prediction: continuous flow microreactors, inline fourier transform infrared spectroscopy, and self-modeling curve resolution. Org Process Res Dev 24:1955–1968. https://doi.org/10.1021/acs.oprd.0c00037

    Article  CAS  Google Scholar 

  15. Zogg A, Fischer U, Hungerbühler K (2004) A new approach for a combined evaluation of calorimetric and online infrared data to identify kinetic and thermodynamic parameters of a chemical reaction. Chemom Intell Lab Syst 71:165–176. https://doi.org/10.1016/j.chemolab.2004.01.025

    Article  CAS  Google Scholar 

  16. de Juan A, Tauler R (2003) Chemometrics applied to unravel multicomponent processes and mixtures. Anal Chim Acta 500:195–210. https://doi.org/10.1016/S0003-2670(03)00724-4

    Article  CAS  Google Scholar 

  17. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J Chemom 9:31–58. https://doi.org/10.1002/cem.1180090105

    Article  CAS  Google Scholar 

  18. Carvalho A, Sanchez M, Wattoom J, Brereton R (2006) Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy. Talanta 68:1190–1200. https://doi.org/10.1016/j.talanta.2005.07.053

    Article  CAS  PubMed  Google Scholar 

  19. Chung R, Yu D, Thai VT et al (2015) Tandem reaction progress analysis as a means for dissecting catalytic reactions: Application to the aza-Piancatelli rearrangement. ACS Catal 5:4579–4585. https://doi.org/10.1021/acscatal.5b01087

    Article  CAS  Google Scholar 

  20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  21. Syed Z, Sogani M (2022). In: Arora S, Kumar A, Ogita S, Yau Y-Y (eds) Innovations in environmental biotechnology. Singapore Nature, Singapore

    Google Scholar 

  22. Jencks WP, Mary G (1964) The reaction of hydroxylamine with amides. Kinetic evidence for the existence of a tetrahedral addition intermediate. J Am Chem Soc 86:5616–5620. https://doi.org/10.1021/ja01078a042

    Article  CAS  Google Scholar 

  23. Tsu J, Díaz VHG, Willis MJ (2019) Computational approaches to kinetic model selection. Comput Chem Eng 121:618–632. https://doi.org/10.1016/j.compchemeng.2018.12.002

    Article  CAS  Google Scholar 

  24. de Juan A, Jaumot J, Tauler R (2014) Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal Methods 6:4964–4976. https://doi.org/10.1039/C4AY00571F

    Article  Google Scholar 

  25. de Juan A, Maeder M, Martı́nez M, Tauler R, (2001) Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes. Anal Chim Acta 442:337–350. https://doi.org/10.1016/S0003-2670(01)01181-3

    Article  Google Scholar 

  26. Gampp H, Maeder M, J. Meyer C, D. Zuberbuehler A, (1987) Quantification of a known component in an unknown mixture. Anal Chim Acta 193:287–293. https://doi.org/10.1016/S0003-2670(00)86160-7

    Article  CAS  Google Scholar 

  27. Bijlsma S, Smilde AK (2000) Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods. J Chemom 14:541–560. https://doi.org/10.1002/1099-128X(200009/12)14:5/6%3c541::AID-CEM609%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  28. Scott Barney G (1976) A kinetic study of the reaction of plutonium(IV) with hydroxylamine. J Inorg Nucl Chem 38:1677–1681. https://doi.org/10.1016/0022-1902(76)80660-4

    Article  Google Scholar 

  29. Monzyk B, Crumbliss AL (1980) Acid dissociation constants (Ka) and their temperature dependencies (∆Ha, ∆Sa) for a series of carbon- and nitrogen-substituted hydroxamic acids in aqueous solution. J Org Chem 45:4670–4675. https://doi.org/10.1021/jo01311a024

    Article  CAS  Google Scholar 

  30. Max J-J, Chapados C (2013) Aqueous ammonia and ammonium chloride hydrates: principal infrared spectra. J Mol Struct 1046:124–135. https://doi.org/10.1016/j.molstruc.2013.04.045

    Article  CAS  Google Scholar 

  31. Boyd CE, Tucker CS, Viriyatum R (2011) Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries. N Am J Aqualcult 73:403–408. https://doi.org/10.1080/15222055.2011.620861

    Article  Google Scholar 

  32. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166. https://doi.org/10.1002/bit.260420203

    Article  CAS  PubMed  Google Scholar 

  33. Campos E, Flotats X (2003) Dynamic simulation of pH in anaerobic processes. Appl Biochem Biotechnol 109:63–76. https://doi.org/10.1385/ABAB:109:1-3:63

    Article  CAS  PubMed  Google Scholar 

  34. Magrí A, Ll C, López H, Campos E, Balaguer M, Colprim J, Flotats X (2007) A model for the simulation of the SHARON process: pH as a key factor. Environ Technol 28:255–265. https://doi.org/10.1080/09593332808618791

    Article  PubMed  Google Scholar 

  35. Rumble JR (2022) CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data, 103rd edn. CRC Press, London

    Google Scholar 

  36. Sommer SG, Husted S (1995) A simple model of pH in slurry. J Agric Sci 124:447–453. https://doi.org/10.1017/S0021859600073408

    Article  Google Scholar 

  37. Phosphate Buffer Issues. https://www.chem.fsu.edu/chemlab/Mastering/PhosphateBuffers.htm. Accessed 16 Mar 2023

  38. Deb K (2011). In: Wang L, Ng A, Deb K (eds) Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London

    Google Scholar 

  39. Soleimani S, Eckels S (2022) Multi-objective optimization of 3D micro-fins using NSGA-II. Int J Heat Mass Transfer 197:123315. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123315

    Article  CAS  Google Scholar 

  40. Jafaryeganeh H, Ventura M, Guedes Soares C (2020) Application of multi-criteria decision making methods for selection of ship internal layout design from a Pareto optimal set. Ocean Eng 202:107151. https://doi.org/10.1016/j.oceaneng.2020.107151

    Article  Google Scholar 

  41. Jafaryeganeh H, Ventura M, Guedes Soares C (2020) Effect of normalization techniques in multi-criteria decision making methods for the design of ship internal layout from a Pareto optimal set. Struct Multidisc Optim 62:1849–1863. https://doi.org/10.1007/s00158-020-02581-9

    Article  Google Scholar 

  42. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494. https://doi.org/10.1021/ed061p494

    Article  CAS  Google Scholar 

  43. Makarewicz J, Kręglewski M, Senent ML (1997) Ab initio potential energy surface and internal torsional–wagging states of hydroxylamine. J Mol Spectrosc 186:162–170. https://doi.org/10.1006/jmsp.1997.7425

    Article  CAS  PubMed  Google Scholar 

  44. Edwards DC, Nielsen SB, Jarzęcki AA, Spiro TG, Myneni S (2005) Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation. Geochim Cosmochim Acta 69:3237–3248. https://doi.org/10.1016/j.gca.2005.01.030

    Article  CAS  Google Scholar 

  45. Schwarzenbach G, Schwarzenbach K (1963) Hydroxamatkomplexe I. die Stabilität der Eisen(III)-Komplexe einfacher Hydroxamsäuren und des Ferrioxamins B. Helv Chim Acta 46:1390–1400. https://doi.org/10.1002/hlca.19630460434

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant numbers 62103391 and 22173087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuliang Ye.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Ni, L., Qiu, W. et al. Kinetic evaluation for the reaction of hydroxylamine with acetamide using online infrared spectra and pH profile analysis. Reac Kinet Mech Cat 136, 1819–1837 (2023). https://doi.org/10.1007/s11144-023-02465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02465-1

Keywords

Navigation