Skip to main content
Log in

Numerical simulation of a heterogeneous catalytic batch reactor to produce biodiesel from vegetable oil

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Here in the results of simulation of a batch reactor in which the transesterification of triolein is carried out in presence of a heterogenous catalyst. The simulated operation conditions consisted in two levels of temperature (50 and 60 °C), concentration of catalyst (0.5 and 1.0 kg/m3) and two initial concentrations of intermediaries and final products (at 1 and 10 g), keeping the amount of triolein and methanol at 1 kg and 12 mol of alcohol per mol of triolein. For the most severe conditions and lower amount of intermediaries and product in the feedstock, the final concentration of methyl oleate was 1.45 mol/L. At similar conditions of operation of reactor, the effect of reducing the concentration of catalyst was the factor that affected mainly the production of methyl oleate (1.41 mol/L), followed by the effect of temperature (1.44 mol/L of methyl oleate), while no appreciable effect on biodiesel production was observed by increasing the concentration of intermediaries and products in the feedstock. The developed reactor model predicted accordingly the profiles of viscosity and density which are necessary to the mechanical design of reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Abbreviations

\({A}_{1k}, {B}_{1k}, {C}_{1k}, {A}_{2k}, {B}_{2k}, {C}_{2k}\) :

Regression parameters of Eq. 25

\({a}_{S}\) :

Volumetric area

\({c}_{i}^{L}\) :

Molar concentration in liquid bulk

\({c}_{i}^{S}\) :

Molar concentration at solid catalyst surface

\({D}_{im}\) :

Diffusion coefficient

\(d\) :

Particle diameter of catalyst

\({f}_{0}, {f}_{1}\) :

Model parameters Eq. 25

\({k}_{LS}^{i}\) :

Interphase liquid–solid mass transfer

\(M\) :

Molecular weight used as factor to scale the perturbation term in Eq. 25

\({N}_{c}\) :

Total number of atoms of carbon contained in the molecule

\({N}_{c s}\) :

Number of carbon atoms of substituents. The values of 1, 2 and 3 are used for methyl, ethyl and propyl

\({N}_{k}\) :

Number of groups k the molecule i

\(P{M}_{MeOH}\) :

Molecular weight of methanol

\(T\) :

Temperature

\(x\) :

Mole fraction

\(\alpha , \beta , \gamma\) :

Model parameters, Eqs. 25 and 27

\(\varepsilon\) :

Power input per unis mass of fluid

\({\varepsilon }_{P}\) :

Particle porosity

\(\eta\) :

Effectiveness factor

\({\Phi }_{MeOH}\) :

Association parameter for methanol (the value taken is 1.9)

\({\mu }_{MeOH}\) :

Methanol viscosity at liquid saturation temperature

\({\xi }_{2}\) :

Parameter that accounts for the differences among isomer viscosity of esters.

\(\sigma\) :

Kinematic viscosity

\({v}_{oil}\) :

Molar volume of the oil

References

  1. Elgharbawy AS, Wagih A, Sadek OM, Kasaby MA (2021) A review on biodiesel feedstocks and production technologies. J Chil Chem Soc 66(1):5098–5109. https://doi.org/10.4067/S0717-97072021000105098

    Article  CAS  Google Scholar 

  2. Polo LM, Elizalde I, Mederos FS, Trejo F, Ramírez E, Sánchez JF (2020) Assessing different alternatives by simulation to optimize a homogeneous transesterification process to improve the produced/consumed energy. React Kinet Mech Catal 129:41–56. https://doi.org/10.1007/s11144-019-01713-7

    Article  CAS  Google Scholar 

  3. Mukhtar A, Saqib S, Lin H, Ul-Hassan M, Ullah S, Younas M, Rezakazemi M, Ibrahim M, Mahmood A, Asif A, Bokhari A (2022) Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew Sustain Energy Rev 157:112012. https://doi.org/10.1016/j.rser.2021.112012

    Article  CAS  Google Scholar 

  4. Ghosh N, Halder G (2022) Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: a review. Energy Convers Manag 270:116292. https://doi.org/10.1016/j.enconman.2022.116292

    Article  CAS  Google Scholar 

  5. Raheem I, Mohiddin MNB, Tan YH, Kansedo J, Mubarak NM, Abdullah MO, Ibrahim ML (2020) A review on influence of reactor technologies and kinetic studies for biodiesel application. J Ind Eng Chem 91:54–68. https://doi.org/10.1016/j.jiec.2020.08.024

    Article  CAS  Google Scholar 

  6. González-Brambila MM, Montoya de la Fuente JA, González-Brambila O, López-Isunza F (2014) A heterogeneous biodiesel production kinetic model. Revista Mexicana de Ingeniería Química 13(1):311–322

    Google Scholar 

  7. Kapil A, Wilson K, Lee AF, Sadhukhan J (2011) Kinetic modeling studies of heterogeneously catalyzed biodiesel synthesis reactions. Ind Eng Chem Res 50(9):4818–4830. https://doi.org/10.1021/ie101403f

    Article  CAS  Google Scholar 

  8. Dossin TF, Reyniers M-F, Berger RJ, Marin GB (2006) Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl Catal B 67(1–2):136–148. https://doi.org/10.1016/j.apcatb.2006.04.008

    Article  CAS  Google Scholar 

  9. Aniya VK, Muktham RK, Alka K, Satyavathi B (2015) Modeling and simulation of batch kinetics of non-edible Karanja oil for biodiesel production: a mass transfer study. Fuel 161:137–145. https://doi.org/10.1016/j.fuel.2015.08.042

    Article  CAS  Google Scholar 

  10. Hernández R, García JP, González A, Dochain D, Aguilar E (2018) Biodiesel production in a continuous packed bed reactor with recycle: a modeling approach for an esterification system. Renew Energy 116:857–865. https://doi.org/10.1016/j.renene.2017.09.030

    Article  CAS  Google Scholar 

  11. Xiao Y, Gao L, Xiao G, Fu B, Niu L (2012) Experimental and modeling study of continuous catalytic transesterification to biodiesel in a bench-scale fixed-bed reactor. Ind Eng Chem Res 51(37):11860–11865. https://doi.org/10.1021/ie202312z

    Article  CAS  Google Scholar 

  12. Trejo-Zárraga F, de Jesús Hernández-Loyo F, Chavarría-Hernández J, Sotelo-Boyás R (2018) Kinetics of transesterification processes for biodiesel production. Biofuels—state of development. IntechOpen

    Google Scholar 

  13. Pasha MK, Dai L, Liu D et al (2021) An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnol Biofuels 14:129. https://doi.org/10.1186/s13068-021-01977-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fogler HS (2006) Elements of chemical reaction engineering. Pearson Education Inc., New York, p 0131863835

    Google Scholar 

  15. Valeri D, Meirelles AJA (1997) Viscosities of fatty acids, triglycerides, and their binary mixtures. J Am Oil Chem Soc 74(10):1221–1226. https://doi.org/10.1007/s11746-997-0048-6

    Article  CAS  Google Scholar 

  16. DDBST GmbH (2017a). Density of methanol. http://www.ddbst.com/en/EED/PCP/DEN_C110.php

  17. Glycerin Producers’ Association (1963) Physical properties of glycerine and its solutions. Author, New York

    Google Scholar 

  18. Riazi, M. R. (2005). Characterization and properties of petroleum fractions (Vol. 50). ASTM International. ISBN: 9781621987161

  19. Armenante PM, Kirwan DJ (1989) Mass transfer to microparticles in agitated systems. Chem Eng Sci 44(12):2781–2796. https://doi.org/10.1016/0009-2509(89)85088-2

    Article  CAS  Google Scholar 

  20. Poling B, Prausnitz J, O’Connnell J (2001) The properties of gases and liquids. McGraw-Hill, New York, p 9780070116825

    Google Scholar 

  21. Co CET, Tan MC, Diamante JAR, Yan LRC, Tan RR, Razon LF (2011) Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor. Catal Today 174(1):54–58. https://doi.org/10.1016/j.cattod.2011.02.065

    Article  CAS  Google Scholar 

  22. Ceriani R, Gonçalves CB, Rabelo J, Caruso M, Cunha ACC, Cavaleri FW, Batista EC, Meirelles AJA (2007) Group contribution model for predicting viscosity of fatty compounds. J Chem Eng Data 52(3):965–972. https://doi.org/10.1021/je600552b

    Article  CAS  Google Scholar 

  23. Ceriani R, Goncalves C, Coutinho J (2015) Prediction of viscosities of fatty compounds and biodiesel by group contribution. Energy Fuels 29(6):4001–4001

    Article  CAS  Google Scholar 

  24. DDBST GmbH (2017b). Liquid dynamic viscosity of methanol. http://ddbonline.ddbst.de/VogelCalculation/VogelCalculationCGI.exe?component=Methanol from 183 to 463 K

  25. Trejo JA, Longinotti MP, Corti HR (2011) The viscosity of glycerol−water mixtures including the supercooled region. J Chem Eng Data 56(4):1397–1406. https://doi.org/10.1021/je101164q

    Article  CAS  Google Scholar 

  26. MATLAB. (2022). version 9.13.0.2126072 (R2022b). Natick, Massachusetts: The MathWorks Inc

  27. Alismaeel ZT, Al-Jadir TM, Albayati TM, Abbas AS, Doyle AM (2022) Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling. Adv Powder Technol 33(7):103646. https://doi.org/10.1016/j.apt.2022.103646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by IPN through research project SIP-Number 20220873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Elizalde.

Ethics declarations

Conflict of interest

The authors declare they do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-López, R., Elizalde, I. Numerical simulation of a heterogeneous catalytic batch reactor to produce biodiesel from vegetable oil. Reac Kinet Mech Cat 136, 637–651 (2023). https://doi.org/10.1007/s11144-023-02369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02369-0

Keywords

Navigation