Skip to main content
Log in

Hydrodesulfurization of dibenzothiophene on Ni–Co alloy boride catalysts supported on alumina

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Mixed Ni–Co boride alloys supported on alumina and varying the Ni/(Co+Ni) ratio as: 0.00, 0.25, 0.50, 0.75, and 1.00 were synthesized by the chemical reduction method using a potassium borohydride solution. The black precipitates obtained were characterized by different physic-chemistry techniques such as X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), surface measurements (BET specific area, pore volume and pore diameter), chemical analysis, elemental analysis, temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results of characterization showed the formation of amorphous Ni–Co boride alloys. These solids were tested in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT). The results showed a behavior of a volcano-like curve as a function of the Ni content in the alloy with a maximum at Ni/(Co+Ni) ratio of 0.5. These results agree with the degree of reduction confirmed by TPR. On the other hand, these catalysts showed more hydrogenating that hydrodesulfurizing properties, which could be related to the active phases present in these boride alloys. Two actives phase are proposed as responsible for this activity: metallic Co and Ni (responsible for the hydrogenation properties) and Co and Ni borides (responsible for the hydrodesulfurization properties). Furthermore, kinetic studies for HDS of DBT were carried out using these catalysts and the results showed that these catalysts follow the classical mechanism of HDS of DBT, where two catalytic sites are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors approve the availability of the data in this publication.

References

  1. Song C (2003) Catal Today 86:211–263

    Article  CAS  Google Scholar 

  2. US EPA, Diesel Fuel Quality/ Advance Notice of Proposed Rulemaking, EPA420-F-99-011, Office of Mobile Source, May 1999.

  3. Knudsen KG, Cooper BH, Topsoe BHH (1999) Appl Catal A 189:205–215

    Article  CAS  Google Scholar 

  4. Song C, Ma X (2003) Appl Catal B 41:207–238

    Article  Google Scholar 

  5. Lee SL, Wind MDe, Desai PH, Johnson CC, Mehmet YA (1993) Fuel Reformul 5:26–31

    Google Scholar 

  6. Yoshimura Y, Toba M, Farag H, Sakanishi K (2004) Catal Survey Asia 8:47–60

    Article  CAS  Google Scholar 

  7. Zhang R, Li F, Zhang N, Shi Q (2003) Appl Catal A: Gen 239:17–23

    Article  CAS  Google Scholar 

  8. Liu L, Hong L (2016) Catal Today 263:52–60

    Article  CAS  Google Scholar 

  9. Li H, Li H, Dai W-L, Wang W, Fang Z, Deng J-F (1999) Appl Surf Sci 152:25–34

    Article  CAS  Google Scholar 

  10. Acosta D, Ramirez N, Erdmann E, Destéfanis GHE (2008) Catal Today 133–135:49–55

    Article  Google Scholar 

  11. Zhang R, Li F, Shi Q, Luo L (2001) Appl Catal A: Gen 205:279–284

    Article  CAS  Google Scholar 

  12. Yu Z-B, Qiao M-H, Li H-X, Deng J-F (1997) Appl Catal A: Gen 163:1–13

    Article  CAS  Google Scholar 

  13. Chen YZ, Wu KJ (1991) Appl Catal 78:185–197

    Article  CAS  Google Scholar 

  14. Kukula P, Gabova V, Koprivova K, Trtik P (2007) Catal Today 121:27–38

    Article  CAS  Google Scholar 

  15. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Chem Rev 113:7981–8065

    Article  CAS  PubMed  Google Scholar 

  16. International Center for Diffraction Date (ICDD) (2023). https://www.icdd.com/. Accessed 17 January 2023

  17. Skrabalak S, Suslick K (2006) Chem Mater 18:3103–3107

    Article  CAS  Google Scholar 

  18. Parks GL, Pease ML, Burns AW, Layman KA, Bussell ME, Wang X, Hanson J, Rodríguez JA (2007) J Catal 246:277–292

    Article  CAS  Google Scholar 

  19. Lewandowski M (2014) Appl Catal B: Environ 160–161:10–21

    Article  Google Scholar 

  20. Lewandowski M (2015) Appl Catal B: Environ 168–169:322–332

    Article  Google Scholar 

  21. Wu Z, Zhao J, Zhang M, Li W, Tao K (2010) Catal Commun 11:973–976

    Article  CAS  Google Scholar 

  22. Nagai M, Goto Y, Ishii H, Omi S (2000) Appl Catal A: Gen 192:189–199

    Article  CAS  Google Scholar 

  23. Shafi R, Hutchings GJ (2000) Catal Today 59:423–442

    Article  CAS  Google Scholar 

  24. Mijoin J, Pérot G, Bataille F, Lemberton JL, Breysse M, Kasztelan S (2001) Catal Letter 71:139–145

    Article  CAS  Google Scholar 

  25. Houalla M, Nag NK, Spare AV, Broderick H, Gates BC (1978) AIChe J 24:1015–1021

    Article  CAS  Google Scholar 

  26. Castaño P, Zepeda TA, Pawelec B, Makkee M, Fierro JLG (2009) J Catal 267:30–39

    Article  Google Scholar 

  27. Owusu-Boakye A, Dalai AK, Ferdous ADJ (2006) Can J Chem Eng 84:572–580

    Article  CAS  Google Scholar 

  28. He Y, Qiao M, Hu H, Pei Y, Li H, Deng J, Fan K (2002) Mater Lett 56:952–957

    Article  CAS  Google Scholar 

  29. Pérot G (2003) Catal Today 86:111–128

    Article  Google Scholar 

  30. Cardoso C, Licea YE, Huang X, Willinger M, Louis B, Pereira M (2015) Micro Meso Mater 207:134–141

    Article  CAS  Google Scholar 

  31. Trisunaryanti W, Suarsih E, Triyono, Falah LI (2019) RSC Adv 9:1230–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kale AN, Miotello A, Mosaner P (2006) Appl Surf Sci 252:7904–7910

    Article  CAS  Google Scholar 

  33. Molvinger K, Lopez M, Court J (1999) J Mol Catal A: Chem 150:267–273

    Article  CAS  Google Scholar 

  34. Goicoechea S, Kraleva E, Sokolov S, Schneider M, Pohl M-M, Kockmann N, Ehrich H (2016) Appl Catal A: Gen 514:182–191

    Article  CAS  Google Scholar 

  35. Shen J-H, Chen Y-W (2007) J Mol Catal A: Chem 273:265–276

    Article  CAS  Google Scholar 

  36. Bekish YN, Gaevskaya TV, Tsybulskaya LS, Lee GL, Kim M (2010) Prot Me Phys Chem Surf 46:276–282

    Google Scholar 

  37. Dai WL, Qiao MH, Deng JF (1997) Appl Surf Sci 120:119–124

    Article  CAS  Google Scholar 

  38. Kim KS, Baitinger WE, Amy JW, Winograd N (1974) J Electron Spectrosc Relat Phenom 5:351–357

    Article  CAS  Google Scholar 

  39. Dickinson T, Povey AF, Sherwood PMA (1977) J Chem Soc Faraday Trans 1(73):327–343

    Article  Google Scholar 

  40. McIntyre NS, Cook MG (1975) Anal Chem 47:2208–2213

    Article  CAS  Google Scholar 

  41. Okamoto Y, Nitta Y, Imanaka T, Teranishi S (1980) J Chem Soc Faraday Trans 1(75):998–1007

    Article  Google Scholar 

  42. Schreifels JA, Maybury PC, Swartz WE (1980) J Catal 65:195–206

    Article  CAS  Google Scholar 

  43. Li J, Qiao M, Deng J-F (2001) J Mol Catal A 169:295–301

    Article  CAS  Google Scholar 

  44. Lebugle A, Axelsson U, Nyholm R, Martensson N (1981) Phys Scr 23:825–827

    Article  CAS  Google Scholar 

  45. Riani P, Garbarino G (2016) Appl Catal A: Gen 518:67–77

    Article  CAS  Google Scholar 

  46. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble Jr. JR., NIST X-ray Photoelectron Spectroscopy Database, version3.4, vol. 2005, National Institute of Standards and Technology, 2003.

  47. Li H, Wu Y, Zhang J, Dai W, Qiao M (2004) Appl Catal A 275:199–206

    Article  CAS  Google Scholar 

  48. Hendrickson NN, Hollander JM, Jolly WL (1970) Inorg Chem 9:612–615

    Article  CAS  Google Scholar 

  49. Wao Y, Sun Z, Wang A, Ruan L, Lu M, Ren J, Li X, Li C, Hu Y, Yao P (2004) Ind Eng Chem Res 43:2324–2329

    Article  Google Scholar 

  50. Da Costa P, Potvin C, Manoli J-M, Lemberton J-L, Pérot G, Djéga-Mariadassou G (2002) J Mol Catal A: Chem 184:335–347

    Article  Google Scholar 

  51. Whiterhurst DD, Isoda T, Mochida I (1998) Adv Catal 42:1577–1580

    Google Scholar 

  52. Thomas JM, Thomas WJ (1967) Introduction to the principles of heterogeneous catalysis. Academic Press, London

    Book  Google Scholar 

  53. Houlla M, Broderick DH, Sapre AV, Nag NK, Beer VHJD (1980) J Catal 6:533

    Google Scholar 

  54. Lewandowski M, Szymańska-Kolasa A, Beaunier P, Djéga-Mariadassou G (2014) Appl Catal B: Envi 144:750–759

    Article  CAS  Google Scholar 

  55. Szymańska-Kolasa A, Lewandowski M, Sayag C, Djéga-Mariadassou G (2007) Catal Today 119:7–12

    Article  Google Scholar 

  56. Orozco EO, Vrinat M (1998) Appl Catal A: Gen 170:195–206

    Article  Google Scholar 

  57. Bezverkhyy I, Schneefeld S, Skrzypski J, Bellat J-P (2009) Appl Catal A: Gen 371:199–204

    Article  CAS  Google Scholar 

  58. Okamoto Y, Nitta Y, Imanaka T, Teranishi S (1980) J Catal 64:397–404

    Article  CAS  Google Scholar 

  59. Afanasiev P, Bezverkhhy I (2007) Appl Catal A: Gen 322:129–141

    Article  CAS  Google Scholar 

  60. Boudart M (1984) Djéga-mariadassou G (1984) “Kinetics of heterogeneous catalytic reaction.” Princenton University Press, Princenton

    Book  Google Scholar 

  61. Djéga-mariadassou G, Boudart M (2003) J Catal 261:89–97

    Article  Google Scholar 

  62. Brunet S, Mey D, Pérot G, Bouchy C, Diehl F (2005) Appl Catal A: Gen 278:143–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Linares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4174 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linares, C.F., Brunet, S. Hydrodesulfurization of dibenzothiophene on Ni–Co alloy boride catalysts supported on alumina. Reac Kinet Mech Cat 136, 47–68 (2023). https://doi.org/10.1007/s11144-023-02356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02356-5

Keywords

Navigation