Skip to main content
Log in

Selective hydrogenation of 1-hexyne/1-hexene mixture on mesoporous silica gel doped with dysprosium, lanthanum, and modified with silver

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Selective hydrogenation of 1-hexyne/1-hexene mixture was studied in the temperature range of 100–150 °C (hydrogen pressure of 3 atm) on a catalyst based on mesoporous silica gel (MPS) doped with dysprosium, lanthanum and modified with silver (Dy–Ag/MPS, La–Ag/MPS). The catalysts were studied by scanning electron microscopy, X-ray fluorescence, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, temperature programmed reduction and inductively coupled plasma mass spectrometry. It was found that the conversions of 1-hexyne on Dy–Ag/MPS are higher than on La–Ag/MPS. Moreover, it has been shown that the Dy–Ag/MPS sample exhibits greater efficiency and selectivity for 1-hexene in the hydrogenation of a 1-hexyne/1-hexene mixture. In addition, it was shown that the selectivity of Dy–Ag/MPS for 1-hexene remains the same with an increase of 1-hexyne concentration in the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data is available.

Code availability

Not applicable.

References

  1. Björk EM (2017) J Chem Educ 94:91–94. https://doi.org/10.1021/acs.jchemed.5b01033

    Article  CAS  Google Scholar 

  2. Malgras V, Ataee-Esfahani H, Wang H, Jiang B, Li C, Wu KCW, Kim JH, Yamauchi Y (2016) Adv Mater 28:993–1010

    Article  CAS  PubMed  Google Scholar 

  3. Salimian S, Zadhoush A, Mohammadi A (2018) J Reinf Plast Compos 37:441–459. https://doi.org/10.1177/0731684417752081

    Article  CAS  Google Scholar 

  4. Zhu J, Peng X, Yao L, Shen J, Tong D, Hu C (2011) Int J Hydr Energy 36:7094–7104. https://doi.org/10.1016/j.ijhydene.2011.02.133

    Article  CAS  Google Scholar 

  5. Yang X, Wei Y, Jiang Y, Wang Y, Chen L, Peng L, Yan Y (2021) Ind Eng Chem Res 60(15):5352–5363. https://doi.org/10.1021/acs.iecr.0c05590

    Article  CAS  Google Scholar 

  6. Wang Z, Yu S (2016) Catal Commun 84:108–111. https://doi.org/10.1016/j.catcom.2016.06.014

    Article  CAS  Google Scholar 

  7. Zheng J, Chen Z, Fang J, Wang Z, Zuo S (2020) J Rare Earths 38:933–940. https://doi.org/10.1016/j.jre.2019.06.005

    Article  CAS  Google Scholar 

  8. Cheng Z, Feng B, Chen Z, Zheng J, Li J, Zuo S (2020) Chem Eng J 392:741–747. https://doi.org/10.1016/j.cej.2019.123747

    Article  CAS  Google Scholar 

  9. Costa JAS, de Jesus RA, Dorst DD, Pinatti IM, Oliveira LMDR, de Mesquita ME, Paranhos CM (2017) J Lumin 192:1149. https://doi.org/10.1016/j.jlumin.2017.08.046

    Article  CAS  Google Scholar 

  10. Zykin MA, Dyakonov AK, Eliseev AA, Trusov LA, Kremer RK, Dinnebier RE, Kazin PE (2021) RSC Adv 11(12):6926–6933. https://doi.org/10.1039/D1RA00613D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dehghani S, Haghighi M (2019) Waste Manag 95:584–592. https://doi.org/10.1016/j.wasman.2019.05.042

    Article  CAS  PubMed  Google Scholar 

  12. Han Y, Wen B, Zhu M, Dai B (2018) J Rare Earths 36:367–373. https://doi.org/10.1016/j.jre.2017.07.016

    Article  CAS  Google Scholar 

  13. Wangcheng ZHAN, Guanzhong LU, Yanglong G, Yun GUO, Yunsong WANG (2008) J Rare Earths 26:59–65. https://doi.org/10.1016/S1002-0721(08)60038-1

    Article  Google Scholar 

  14. Méndez FJ, Franco-López OE, Bokhimi X, Solís-Casados DA, Escobar-Alarcón L, Klimova TE (2017) Appl Cat B: Environ 219:479–491. https://doi.org/10.1016/j.apcatb.2017.07.079

    Article  CAS  Google Scholar 

  15. Chagas P, Oliveira HS, Mambrini R, Le Hyaric M, de Almeida MV, Oliveira LCA (2013) Appl Catal A 454:88–92. https://doi.org/10.1016/j.apcata.2013.01.007

    Article  CAS  Google Scholar 

  16. Tiozzo C, Bisio C, Carniato F, Gallo A, Scott SL, Psaro R, Guidotti M (2013) Phys Chem Chem Phys 15:13354–13362. https://doi.org/10.1039/C3CP51570B

    Article  CAS  PubMed  Google Scholar 

  17. Dakhel AA (2016) Mater Res 19:379–383. https://doi.org/10.1590/1980-5373-MR-2015-0404

    Article  CAS  Google Scholar 

  18. Shafigulin RV, Filippova EO, Shmelev AA, Bulanova AV (2019) Catal Lett 149:916–928. https://doi.org/10.1007/s10562-019-02678-x

    Article  CAS  Google Scholar 

  19. Abdullah H, Kuo DH, Gultom NS (2019) Catal Sci Technol 9(10):2651–2663. https://doi.org/10.1039/c9cy00502a

    Article  CAS  Google Scholar 

  20. Dedov AG, Loktev AS, Moiseev II, Aboukais A, Lamonier JF, Filimonov IN (2003) Appl Catal A 245:209–220. https://doi.org/10.1016/S0926-860X(02)00641-5

    Article  CAS  Google Scholar 

  21. Uttamaprakrom W, Reubroycharoen P, Charoensiritanasin P, Tatiyapantarak J, Srifa A, Koo-Amornpattana W, Ratchahat S (2021) J Environ Chem Eng 9(5):106150. https://doi.org/10.1016/j.jece.2021.106150

    Article  CAS  Google Scholar 

  22. de la Iglesia O, Sarango M, Munárriz M, Malankowska M, Navajas A, Gandía LM, Téllez C (2022) ACS Sustain Chem Eng 10(9):2868–2880. https://doi.org/10.1021/acssuschemeng.1c04655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng J, Lin H, Zheng X, Duan X, Yuan Y (2013) Catal Commun 40:129–133. https://doi.org/10.1016/j.catcom.2013.06.022

    Article  CAS  Google Scholar 

  24. Sheng H, Zhang H, Ma H, Qian W, Ying W (2020) Catal Today 358:122–128. https://doi.org/10.1016/j.cattod.2019.06.015

    Article  CAS  Google Scholar 

  25. Feng Y, Li W, Meng M, Yin H, Mi J (2019) Appl Catal B 253:111–120. https://doi.org/10.1016/j.apcatb.2019.04.051

    Article  CAS  Google Scholar 

  26. Abrokwah RY, Deshmane VG, Kuila D (2016) J Mol Catal A: Chem 425:10–20. https://doi.org/10.1016/j.molcata.2016.09.019

    Article  CAS  Google Scholar 

  27. Asghari S, Haghighi M, Taghavinezhad P (2019) Microporous Mesoporous Mater 279:165–177. https://doi.org/10.1016/j.micromeso.2018.12.025

    Article  CAS  Google Scholar 

  28. Yan H, Yao S, Yin B, Liang W, Jin X, Feng X, Yang C (2019) Appl Catal B: Environ 259:118070. https://doi.org/10.1016/j.apcatb.2019.118070

    Article  CAS  Google Scholar 

  29. Sun X, Xu D, Dai P, Liu X, Tan F, Guo Q (2020) Chem Eng J 402:125881. https://doi.org/10.1016/j.cej.2020.125881

    Article  CAS  Google Scholar 

  30. Bond GC, Dowden DA, Mackenzie N (1958) Trans Faraday Soc 54:1537–1546. https://doi.org/10.1039/TF9585401537

    Article  CAS  Google Scholar 

  31. Zhang Q, Li J, Liu X, Zhu Q (2000) Appl Catal A 197(2):221–228. https://doi.org/10.1016/S0926-860X(99)00463-9

    Article  CAS  Google Scholar 

  32. Prakash MG, Mahalakshmy R, Krishnamurthy KR, Viswanathan B (2016) Catal Today 263:105–111. https://doi.org/10.1016/j.cattod.2015.09.053

    Article  CAS  Google Scholar 

  33. Cheng S, Meng T, Mao D, Guo X, Yu J, Ma Z (2022) Nanomaterials 12(3):407. https://doi.org/10.3390/nano12030407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chanerika R, Shozi ML, Prato M, Friedrich HB (2022) Mol Catal 525:112344. https://doi.org/10.1016/j.mcat.2022.112344

    Article  CAS  Google Scholar 

  35. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal Lett 108:159–164. https://doi.org/10.1007/s10562-006-0041-y

    Article  CAS  Google Scholar 

  36. Chanerika R, Shozi ML, Friedrich HB (2022) ACS Omega 7(5):4026–4040. https://doi.org/10.1021/acsomega.1c05231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burdick DL, Leffler DL (1990) Petrochemicals in nontechnical language, 2nd edn. Pennwell Books, Tulsa, Oklahoma, United States, p 360

    Google Scholar 

  38. Filippova EO, Shafigulin RV, Tokranov AA, Shmelev AA, Bulanova AV, Pimerzin AA, Karaev AA (2020) J Chin Chem Soc 67(7):1167–1173. https://doi.org/10.1002/jccs.201900440

    Article  CAS  Google Scholar 

  39. Gerasimov Ya I, Dreving VV, Eremin EN Course of physical chemistry. Vol 2. 1973. p. 354

  40. Emanuel NM, Knorre DG Chemical kinetics course.—M .: Higher school, 1974. p. 400

  41. Tarasevich BN IR spectra of the main classes of organic compounds: reference materials/B.N. Tarasevich—Moscow State University. 2012. p 55. http://www.chem.msu.su/rus/teaching/tarasevich/Tarasevich_IR_tables_29-02-2012.pdf

  42. Karpov SI, Roessner F, Selemenev VF (2014) J Porous Mater 21:449–457. https://doi.org/10.1007/s10934-014-9791-x

    Article  CAS  Google Scholar 

  43. Karpov SI, Roessner F, Selemenev VF, Belanova NA, Krizhanovskaya OO (2013) Russ J Phys Chem A 87(11):1888–1894

    Article  CAS  Google Scholar 

  44. Brunauer S, Deming LS, Deming W, Teller E (1940) J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  45. Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H (2014) Materials 7(3):2340–2355. https://doi.org/10.3390/ma7032340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang Z et al (2014) Am Ceram Soc 97:432–441. https://doi.org/10.1111/jace.12732

    Article  CAS  Google Scholar 

  47. Tokranova EO, Tokranov AA, Yu Vinogradov K, Shafigulin RV, Bulanova AV (2022) Int J Chem Kinet 54:647–658. https://doi.org/10.1002/kin.21602

    Article  CAS  Google Scholar 

  48. Anderson JA, Mellor J, Wells RP (2009) J Catal 261(2):208–216. https://doi.org/10.1016/j.jcat.2008.11.023

    Article  CAS  Google Scholar 

  49. Crespo-Quesada M, Dykeman RR, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2011) J Catal 279(1):66–74. https://doi.org/10.1016/j.jcat.2011.01.003

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Grant FSSS-2020-0016 within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andzhela V. Bulanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors agree to the publication of the article data.

Research involving humans and/or animals

Not applicable.

Consent to participate

The authors agree to participate.

Consent for publication

The authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokranov, A.A., Tokranova, E.O., Shagifulin, R.V. et al. Selective hydrogenation of 1-hexyne/1-hexene mixture on mesoporous silica gel doped with dysprosium, lanthanum, and modified with silver. Reac Kinet Mech Cat 136, 217–231 (2023). https://doi.org/10.1007/s11144-022-02344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02344-1

Keywords

Navigation