Skip to main content
Log in

Enhanced photocatalytic activity of FeVO4 nanoparticles biosynthesized using olive leaves extract for photodegradation of crystal violet (CV)

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper reports the biosynthesis of FeVO4 to evaluate its photocatalytic activity in heterogeneous phase. In this synthesis, we use olive leaf extract as a reducing and stabilizing agent. The prepared material was characterized by X-ray diffraction, FT-IR spectrometry, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, BET. In order to select the optimal conditions, the effects of process parameters on the degradation of the crystal violet dye, such as the amount of photocatalyst, solution pH, irradiation time and wavelength of radiation were studied. In order to improve the photocatalytic activity of FeVO4 we have doped it with the two metals manganese and silver. A remarkable photocatalytic activity is observed in the case of doping FeVO4 with silver using 12 W commercial LED lamps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexander DGS, Thatheyus AJ (2021) Fungal bioremediation of toxic textile dye effluents. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology. Elsevier, Amsterdam, pp 80–353. https://doi.org/10.1016/B978-0-12-821925-6.00016-2

  2. Chowdhury MF, Khandaker S, Sarker F, Islam A, Rahman MT, Awual MR (2020) Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114061

    Article  Google Scholar 

  3. Christie R (2007) Environmental aspects of textile dyeing. Elsevier, Amsterdam

    Book  Google Scholar 

  4. Mosleh S, Ghaedi M (2021) Photocatalytic reactors: technological status, opportunities, and challenges for development and industrial upscaling. In: Interface science and technology. Elsevier, Amsterdam, pp 90–761

  5. Sadeghfar F, Ghaedi M (2021) Photocatalytic treatment of pollutants in aqueous media. In: Interface science and technology. Elsevier, Amsterdam, pp. 59–735. https://doi.org/10.1016/B978-0-12-818806-4.00011-5

  6. Abdel-Azim S, Aman D, Abd El Salam H (2021) Visible-light responsive Cu-MOF-NH2 for highly efficient aerobic photocatalytic oxidation of benzyl alcohol. Kinet Catal 62:S9–S20

    Article  CAS  Google Scholar 

  7. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology 5:1. https://doi.org/10.4172/2157-7439.1000233

    Article  CAS  Google Scholar 

  8. Rao MD, Pennathur G (2017) Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater Res Bull 85:64–73. https://doi.org/10.1016/j.materresbull.2016.08.049

    Article  CAS  Google Scholar 

  9. Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:88–277. https://doi.org/10.1038/nmat1339

    Article  Google Scholar 

  10. Sobhani A, Salavati-Niasari M (2021) Transition metal selenides and diselenides: hydrothermal fabrication, investigation of morphology, particle size and their applications in photocatalyst. Adv Coll Interface Sci 287:102321. https://doi.org/10.1016/j.cis.2020.102321

    Article  CAS  Google Scholar 

  11. Gao P, Yin Z, Feng L, Liu Y, Du Z et al (2020) Solvothermal synthesis of multiwall carbon nanotubes/BiOI photocatalysts for the efficient degradation of antipyrine under visible light. Environ Res 185:109468. https://doi.org/10.1016/j.envres.2020.109468

    Article  CAS  PubMed  Google Scholar 

  12. Vinosha PA, Xavier B, Anceila D, Das SJ (2018) Nanocrystalline ferrite (MFe2O4, M= Ni, Cu, Mn and Sr) photocatalysts synthesized by homogeneous Co-precipitation technique. Optik 157(8–441):61

    Google Scholar 

  13. Figueira RB (2021) Greener synthesis and applications of hybrid sol–gel-processed materials. In: Handbook of greener synthesis of nanomaterials and compounds. Elsevier, Amsterdam, pp 90–459

  14. Trindade F, Politi MJ (2019) Sol-gel chemistry—deals with sol–gel processes. In: Nano design for smart gels. Elsevier, Amsterdam, pp 15–34. https://doi.org/10.1016/B978-0-12-814825-9.00002-3

  15. Dutta DP, Ramakrishnan M, Roy M, Kumar A (2017) Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J Photochem Photobiol A 335:11–102. https://doi.org/10.1016/j.jphotochem.2016.11.022

    Article  CAS  Google Scholar 

  16. Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y (2008) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl Catal B 84:73–468. https://doi.org/10.1016/j.apcatb.2008.04.029

    Article  CAS  Google Scholar 

  17. Wang L, Shi X, Jia Y, Cheng H, Wang L, Wang Q (2021) Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chin Chem Lett 32:78–1869. https://doi.org/10.1016/j.cclet.2020.11.065

    Article  CAS  Google Scholar 

  18. Shamaila S, Sajjad AKL, Farooqi SA, Jabeen N, Majeed S, Farooq I (2016) Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:99–105. https://doi.org/10.1016/J.APMT.2016.09.009

    Article  Google Scholar 

  19. Sajid MM, Shad NA, Javed Y, Khan SB, Zhang Z, Amin N, Zhai H (2022) Morphological effects on the photocatalytic performance of FeVO4 nanocomposite. Nano-Struct Nano-Objects 22:100431

    Article  Google Scholar 

  20. Thaba KP, Mphahlele-Makgwane MM, Kyesmen PI, Diale M, Baker PG, Makgwane PG (2022) Composition-dependent structure evolution of FeVO4 nano-oxide and its visible-light photocatalytic activity for degradation of methylene blue. Colloids Surf A 633:127856

    Article  CAS  Google Scholar 

  21. Ma X-H, Zhang F, Wei Y-Y, Zhou J-H, Wang J et al (2018) Facile synthesis of amorphous FeVO4 nanoparticles as novel cathode materials for sodium-ion batteries. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2018.07.249

    Article  Google Scholar 

  22. Chen H, Zeng J, Chen M, Chen Z, Ji M, Zhao J, Xia J, Li H (2019) Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid. Chin J Catal 40:744–754. https://doi.org/10.1016/S1872-2067(19)63272-9

    Article  CAS  Google Scholar 

  23. Meng L, Guo R, Sun X, Li F, Peng J et al (2020) Enhanced electrochemical performance of a promising anode material FeVO4 by tungsten doping. Ceram Int Ceramint 46:6–21360

    Google Scholar 

  24. Adams E (1967) The antibacterial action of crystal violet. J Pharm Pharmacol 19:821–826. https://doi.org/10.1111/j.2042-7158.1967.tb09550.x

    Article  CAS  PubMed  Google Scholar 

  25. Muruganandham M, Sobana N, Swaminathan M (2006) Solar assisted photocatalytic and photochemical degradation of reactive black 5. J Hazard Mater 137:6–1371. https://doi.org/10.1016/j.jhazmat.2006.03.030

    Article  CAS  Google Scholar 

  26. Mekidiche M, Khaldi K, Nacer A, Boudjema S, Ameur N, Lerari-Zinai D, Bachari K, Choukchou-Braham A (2021) Organometallic modified montmorillonite application in the wastewaterpurification: pollutant photodegradation and antibacterial efficiencies. J Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.151097

    Article  Google Scholar 

  27. Madhusudhana N, Yogendra K, Mahadevan K, Suneel N (2011) Photocatalytic degradation of Coralene Dark Red 2B azo dye using calcium zincate nanoparticle in presence of natural sunlight: an aid to environmental remediation. Int J Chem Eng Appl 2:8–294

    Google Scholar 

  28. Li Y, Zeng Z, Chen Y, Zhang Y, Wang W et al (2022) FeVO4 nanowires for efficient photocatalytic CO 2 reduction. Catal Sci Technol 12:3289–3294. https://doi.org/10.1039/D2CY00324D

    Article  CAS  Google Scholar 

  29. Zhu Y, Xue J, Xu T, He G, Chen H (2017) Enhanced photocatalytic activity of magnetic core–shell Fe3O4@ Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J Mater Sci 28:8519–8528. https://doi.org/10.1007/s10854-017-6574-6

    Article  CAS  Google Scholar 

  30. Gupta NK, Ghaffari Y, Kim S, Bae J, Kim KS, Saifuddin M (2020) Photocatalytic degradation of organic pollutants over MFe2O4 (M= Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-61930-2

    Article  CAS  Google Scholar 

  31. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Guenfoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1250 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdane, A.C., Guenfoud, F. & Bouraada, C. Enhanced photocatalytic activity of FeVO4 nanoparticles biosynthesized using olive leaves extract for photodegradation of crystal violet (CV). Reac Kinet Mech Cat 136, 491–506 (2023). https://doi.org/10.1007/s11144-022-02335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02335-2

Keywords

Navigation