Skip to main content
Log in

PdZn on ZSM-5 nanoparticles for CO2 hydrogenation to dimethyl ether: comparative in situ analysis with Pd/TiO2 and PdZn/TiO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CO2 hydrogenation to dimethyl ether was investigated on PdZn alloy deposited onto ZSM-5 nanoparticles. The effect of ZSM-5 morphology and textural properties were investigated on the efficiency of CO2 conversion and product selectivities. ZSM-5 nanoparticles showed higher conversion and selectivity towards DME than the elongated cubic ZSM-5. Uniform nanospherical ZSM-5 formed interparticle mesoporosity and improved surface area for efficient CO2 adsorption and diffusion. Comparative in situ analysis on PdZn/ZSM-5, PdZn/TiO2, Pd/TiO2 and physically mixed PdZn/TiO2 + ZSM-5 allow an understanding of the role of PdZn alloy and solid acid support in forming intermediate species during hydrogenation. CO2 was transformed into adsorbed carbonate and hydrogenated into bicarbonate and methoxy CH3O* on Pd and PdZn. However, Pd caused C–O dissociation to form methane, while PdZn stabilized CH3O* to form methanol on TiO2. Solid acid ZSM-5 catalyzed dehydration of two CH3O* to form dimethyl ether.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898

    Article  CAS  PubMed  Google Scholar 

  2. Shen WJ, Jun KW, Choi HS, Lee KW (2000) Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 Hydrogenation. Korean J Chem Eng. 17(2):210–6

    Article  CAS  Google Scholar 

  3. Ting KW, Toyao T, Siddiki SMAH, Shimizu KI (2019) Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts. ACS Catal 9:3685–3693

    Article  CAS  Google Scholar 

  4. Shaaban E, Li G (2022) Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Commun Chem 5(1):1–9

    Article  Google Scholar 

  5. Fernández-Dacosta C, Stojcheva V, Ramirez A (2018) Closing carbon cycles: Evaluating the performance of multi-product CO2 utilisation and storage configurations in a refinery. Journal of CO2 Utilization 23:128–142

  6. Lam E, Corral-Pérez JJ, Larmier K, Noh G, Wolf P, Comas-Vives A, Urakawa A, Copéret C (2019) CO2 Hydrogenation on Cu/Al2O3: role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew Chem Int Ed 58:13989–13996

    Article  CAS  Google Scholar 

  7. Phongprueksathat N, Bansode A, Toyao T, Urakawa A (2021) Greener and facile synthesis of Cu/ZnO catalysts for CO2 hydrogenation to methanol by urea hydrolysis of acetates. RSC Adv 11:14323–14333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ojelade OA, Zaman SF (2019) A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catalysis Surveys from Asia 2019 24:1 24:11–37

  9. Martin NM, Velin P, Skoglundh M, Bauer M, Carlsson PA (2017) Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catal Sci Technol 7:1086–1094

    Article  CAS  Google Scholar 

  10. Zabilskiy M, Sushkevich VL, Newton MA, Krumeich F, Nachtegaal M, van Bokhoven JA (2021) Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO-based catalysts: the role of palladium-zinc alloy in selective methanol synthesis. Angew Chem Int Ed 60:17053–17059

    Article  CAS  Google Scholar 

  11. Collins SE, Baltanás MA, Delgado JJ, Borgna A, Bonivardi AL (2021) CO2 hydrogenation to methanol on Ga2O3-Pd/SiO2 catalysts: dual oxide-metal sites or (bi)metallic surface sites? Catal Today 381:154–162

    Article  CAS  Google Scholar 

  12. Bahruji H, Bowker M, Jones W, Hayward J, Ruiz Esquius J, Morgan DJ, Hutchings GJ (2017) PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discuss 197:309–324

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz Esquius J, Bahruji H, Taylor SH, Bowker M, Hutchings GJ (2020) CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12:6024–6032

    Article  CAS  Google Scholar 

  14. Bahruji H, Armstrong RD, Ruiz Esquius J, Jones W, Bowker M, Hutchings GJ (2018) Hydrogenation of CO2 to dimethyl ether over Brønsted acidic PdZn catalysts. Ind Eng Chem Res 57:6821–6829

    Article  CAS  Google Scholar 

  15. Zhang Y, Li D, Zhang S, Wang K, Wu J (2014) CO2 hydrogenation to dimethyl ether over CuO–ZnO–Al2O3/HZSM-5 prepared by combustion route. RSC Adv 4:16391–16396

    Article  CAS  Google Scholar 

  16. Mondal U, Yadav GD (2022) Direct synthesis of dimethyl ether from CO2 hydrogenation over a highly active, selective and stable catalyst containing Cu–ZnO–Al2O3/Al–Zr(1 : 1)-SBA-15. React Chem Eng 7:1391–1408

    Article  CAS  Google Scholar 

  17. Li W, Wang K, Zhan G, Huang J, Li Q (2020) Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO. ACS Sustain Chem Eng 8:14058–14070

    Article  CAS  Google Scholar 

  18. Rownaghi AA, Hedlund J (2011) Methanol to gasoline-range hydrocarbons: influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Ind Eng Chem Res 50:11872–11878

    Article  CAS  Google Scholar 

  19. Cheng H, Scott K (2011) Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—metal or oxide? Appl Catal B 108–109:140–151

    Article  Google Scholar 

  20. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146

    Article  CAS  Google Scholar 

  21. Subagyo R, Tehubijuluw H, Utomo WP, Rizqi HD, Kusumawati Y, Bahruji H, Prasetyoko D (2022) Converting red mud wastes into mesoporous ZSM-5 decorated with TiO2 as an eco-friendly and efficient adsorbent-photocatalyst for dyes removal. Arab J Chem 15:103754

    Article  CAS  Google Scholar 

  22. Buzzoni R, Bordiga S, Ricchiardi G, Lamberti C, Zecchina A, Bellussi G (1996) Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-nafion membrane) systems: an IR investigation. Langmuir 12:930–940

    Article  CAS  Google Scholar 

  23. Zhou W, Xin H, Yang H, Du X, Yang R, Li D, Hu C (2018) The deoxygenation pathways of palmitic acid into hydrocarbons on silica-supported Ni12P5 and Ni2P catalysts. Catalysts 8:153

    Article  Google Scholar 

  24. Pekridis G, Kaklidis N, Konsolakis M, Iliopoulou EF, Yentekakis IV, Marnellos GE (2011) Correlation of surface characteristics with catalytic performance of potassium promoted Pd/Al2O3 catalysts: the case of N2O reduction by alkanes or alkenes. Top Catal 54(16):1135–1142

    Article  CAS  Google Scholar 

  25. Wang W, Qu Z, Song L, Fu Q (2020) Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal 382:129–140

    Article  CAS  Google Scholar 

  26. Li C, Yang Y, Ren W, Wang J, Zhu T, Xu W (2020) Effect of Ce doping on catalytic performance of Cu/TiO2 for CO oxidation. Catal Lett 150:2045–2055

    Article  CAS  Google Scholar 

  27. Ye A, Li Z, Ding J, Xiong W, Huang W (2021) Synergistic catalysis of Al and Zn sites of spinel ZnAl2O4 catalyst for CO hydrogenation to methanol and dimethyl ether. ACS Catal 11:10014–10019

    Article  CAS  Google Scholar 

  28. Wu J, Huang CW (2010) In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front Chem Eng China 4(2):120–6

    Article  CAS  Google Scholar 

  29. Elavarasan M, Yang W, Velmurugan S, Chen JN, Yang TC, Yokoi T (2022) Highly efficient photothermal reduction of CO2 on Pd2Cu dispersed TiO2 photocatalyst and operando DRIFT spectroscopic analysis of reactive intermediates. Nanomaterials 12(3):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huynh HL, Zhu J, Zhang G, Shen Y, Tucho WM, Ding Y, Yu Z (2020) Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. J Catal 392:266–277

    Article  CAS  Google Scholar 

  31. Cárdenas-Arenas A, Quindimil A, Davó-Quiñonero A, Bailón-García E, Lozano-Castelló D, De-La-Torre U, Pereda-Ayo B, González-Marcos JA, González-Velasco JR, Bueno-López A (2020) Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Appl Catal B 265:118538

    Article  Google Scholar 

  32. Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H (2019) Exploring the ternary interactions in Cu–ZnO–ZrO 2 catalysts for efficient CO 2 hydrogenation to methanol. Nat Commun. https://doi.org/10.1038/s41467-019-09072-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2020) Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts. Catal Today 357:573–582

    Article  CAS  Google Scholar 

  34. Yu Y, Chan YM, Bian Z, Song F, Wang J, Zhong Q, Kawi S (2018) Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni–CeO2 catalyst: Kinetics and DRIFTS studies. Int J Hydrogen Energy 43:15191–15204

    Article  CAS  Google Scholar 

  35. Das T, Deo G (2011) Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts. J Mol Catal A 350:75–82

    Article  CAS  Google Scholar 

  36. Bonelli B, Civalleri B, Fubini B, Ugliengo P, Otero Arean C, Garrone E (2000) Experimental and quantum chemical studies on the adsorption of carbon dioxide on alkali-metal-exchanged ZSM-5 zeolites. J Phys Chem B 104:10978–10988

    Article  CAS  Google Scholar 

  37. Lønstad Bleken BT, Mino L, Giordanino F, Beato P, Svelle S, Lillerud KP, Bordiga S (2013) Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. Phys Chem Chem Phys 15:13363–13370

    Article  Google Scholar 

  38. Wirawan SK, Creaser D (2006) CO2 adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change response method. Microporous Mesoporous Mater 91:196–205

    Article  CAS  Google Scholar 

  39. Liu C, Kang J, Huang ZQ et al (2021) Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nat Commun. https://doi.org/10.1038/s41467-021-22568-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sheng Q, Ye RP, Gong W, Shi X, Xu B, Argyle M, Adidharma H, Fan M (2020) Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst. J Environ Sci (China) 92:106–117

    Article  CAS  Google Scholar 

  41. Wang W, Qu Z, Song L, Fu Q (2020) CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. J Energy Chem 40:22–30

    Article  CAS  Google Scholar 

  42. Sheng Q, Ye RP, Gong W, Shi X, Xu B, Argyle M, Adidharma H, Fan M (2020) Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst. J Environ Sci 92:106–117

    Article  CAS  Google Scholar 

  43. Thompson MGK, Parnis JM (2008) FTIR analysis of dimethyl ether decomposition products following charge transfer ionization with Ar+ under matrix isolation conditions. J Phys Chem A 112:12109–12116

    Article  CAS  PubMed  Google Scholar 

  44. Flores-Escamilla GA, Fierro-Gonzalez JC (2015) Infrared spectroscopic study of dimethyl ether carbonylation catalysed by TiO2-supported rhodium carbonyls. Catal Sci Technol 5:843–850

    Article  CAS  Google Scholar 

  45. Ruiz-García JR, Fierro-Gonzalez JC, Handy BE, Hinojosa-Reyes L, De Haro Del Río DA, Lucio-Ortiz CJ, Valle-Cervantes S, Flores-Escamilla GA (2019) An in situ infrared study of CO2 hydrogenation to formic acid by using rhodium supported on titanate nanotubes as catalysts. ChemistrySelect 4:4206–4216

    Article  Google Scholar 

  46. Wang L, Guan E, Wang Y, Wang L, Gong Z, Cui Y, Meng X, Gates BC, Xiao FS (2020) Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat Commun 11:1–9

    Google Scholar 

  47. Cao T, You R, Zhang X, Chen S, Li D, Zhang Z, Huang W (2018) An: In situ DRIFTS mechanistic study of CeO2-catalyzed acetylene semihydrogenation reaction. Phys Chem Chem Phys 20:9659–9670

    Article  CAS  PubMed  Google Scholar 

  48. Li Q, Sun Z, Wang H, Wu Z (2018) Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation. J CO2 Util 28:126–136

    Article  CAS  Google Scholar 

  49. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA (2021) Turning CO2 into di-methyl ether (DME) using Pd based catalysts—role of Ca in tuning the activity and selectivity. J Ind Eng Chem 103:67–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Universiti Brunei Darussalam for FIC grant UBD/RSCH/1.9/FICBF(b)/2022/016.

Authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasliza Bahruji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 948 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahruji, H., Abdul Razak, S., Mahadi, A.H. et al. PdZn on ZSM-5 nanoparticles for CO2 hydrogenation to dimethyl ether: comparative in situ analysis with Pd/TiO2 and PdZn/TiO2. Reac Kinet Mech Cat 135, 2973–2991 (2022). https://doi.org/10.1007/s11144-022-02307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02307-6

Keywords

Navigation