Skip to main content
Log in

Development of iron supported carbon foam catalyst for Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of iron supported carbon foam catalysts (10Fe/CF) were successfully synthesized via a facile method by impregnation to reveal the influence of a superior diffusion performance on the Fischer–Tropsch synthesis (FTS) reaction. Meanwhile, different amounts of potassium (0–1.5 wt%) were investigated on 10Fe/CF catalyst by the fixed-bed reactor and typical FTS reaction conditions (300 °C, 1.0 MPa). Various characterizations, including XRD, XPS, Raman, SEM etc. were combined to study the structure, texture, diffusion and Fe phase state. The results revealed that 10Fe/CF catalysts showed superior surface area and FTS performance after the addition of K promoter. Significantly, the addition of K facilitated the formation of C-poor iron carbides, contributing to enrich the reactivity for the syngas to light olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhong LS, Yu F, An YL, Zhao YH, Sun YS, Lei ZJ, Lin TJ, Lin YJ, Qin XZ, Dai YY, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87. https://doi.org/10.1038/nature19786

    Article  CAS  PubMed  Google Scholar 

  2. Torres-Galvis HM, De-Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149. https://doi.org/10.1021/cs4003436

    Article  CAS  Google Scholar 

  3. Anderson RB, Kölbel H, Ralek M (1984) The Fischer–Tropsch synthesis. Academic Press, New York

    Google Scholar 

  4. Lu FX, Chen X, Lei ZG, Wen LX, Zhang Y (2022) Revealing the activity of different iron carbides for Fischer–Tropsch synthesis. Appl Catal B Environ 281:119521–119531. https://doi.org/10.1016/j.apcatb.2020.119521

    Article  CAS  Google Scholar 

  5. Liu Y, Chen JF, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5:3905–3909. https://doi.org/10.1021/acscatal.5b00492

    Article  CAS  Google Scholar 

  6. Liu Y, Lu FX, Tang Y, Liu MY, Tao FF, Zhang Y (2020) Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins. Appl Catal B Environ 261:118219–118229. https://doi.org/10.1016/j.apcatb.2019.118219

    Article  CAS  Google Scholar 

  7. Xie JX, Torres-Galvis HM, Koeken ACJ, Kirilin A, Gugulan AL, Ruitenbeek M, De-Jong KP (2016) Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer–Tropsch catalysts. ACS Catal 6:4017–4024. https://doi.org/10.1021/acscatal.6b00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chun DH, Rhim GB, Youn MH, Deviana D, Lee JE, Park JC, Jeong H (2020) Brief review of precipitated iron-based catalysts for low-temperature Fischer–Tropsh synthesis. Top Catal 63:793–809. https://doi.org/10.1007/s11244-020-01336-6

    Article  CAS  Google Scholar 

  9. Rose M, Talapaneni SN, Joseph S, Ramadass K (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47:2680–2721. https://doi.org/10.1039/C7CS00787F

    Article  Google Scholar 

  10. Subrmoney S (1998) Novel nanocarbons-structure, properties, and potential applications. Adv Mater 10:1151–1171. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15%3c1157::AID-ADMA1157%3e3.0.CO;2-N

    Article  Google Scholar 

  11. Dai S, Liang C, Li Z (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3639–3717. https://doi.org/10.1002/anie.200702046

    Article  CAS  Google Scholar 

  12. Lyu LF, Wang FL, Zhang X, Qiao J, Liu C, Liu JR (2021) CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 172:488–496. https://doi.org/10.1016/j.carbon.2020.10.021

    Article  CAS  Google Scholar 

  13. Lou ZC, Li R, Liu J, Wang QY, Zhang Y, Li YJ (2021) Used dye adsorbent derived N-doped magnetic carbon foam with enhanced electromagnetic wave absorption performance. J Alloys Compd 854:157286–157300. https://doi.org/10.1016/j.jallcom.2020.157286

    Article  CAS  Google Scholar 

  14. Zhan YH, Oliviero M, Wang J, Sorrentino A, Buonocore GB, Sorrentino LG, Lavorgna M, Xia HS, Lannace S (2019) Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11:1011–1020. https://doi.org/10.1039/C8NR07351A

    Article  CAS  PubMed  Google Scholar 

  15. Li JW, Ding YQ, Yu N, Gao Q, Fan X, Wei X, Zhang GC, Ma ZL, He XH (2020) Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158:45–54. https://doi.org/10.1016/j.carbon.2019.11.075

    Article  CAS  Google Scholar 

  16. Kuang TR, Chang LQ, Chen F, Sheng Y, Fu DJ, Peng XF (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313. https://doi.org/10.1016/j.carbon.2016.04.052

    Article  CAS  Google Scholar 

  17. Ganiyu SO, De-Araújo MJG, Costa ECTA, Santos JEL, Dos-Santos EV, Martínez-Huitle CA, Pergher SBC (2021) Design of highly efficient porous carbon foam cathode for electro-Fenton degradation of antimicrobial sulfanilamide. Appl Catal B Environ 283:119652–119665. https://doi.org/10.1016/j.apcatb.2020.119652

    Article  CAS  Google Scholar 

  18. Singh S, Pophali A, Omar RA, Kumar R, Kumar P, Mondal DP, Pant D, Verma N (2021) A nickel oxide-decorated in situ grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chem Commun 57:879–882. https://doi.org/10.1039/D0CC07303B

    Article  CAS  Google Scholar 

  19. Zhu GY, He Z, Chen J, Zhao J, Feng XM, Ma YW, Fan QL, Wang LH, Huang W (2014) Highly conductive three-dimensional MnO2–carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6:1079–1085. https://doi.org/10.1039/C3NR04495E

    Article  CAS  PubMed  Google Scholar 

  20. Guo Z, Long B, Gao SJ, Luo JC, Wang L, Huang XW, Wang D, Xue HG, Gao JF (2021) Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. J Hazard Mater 402:123838–123844. https://doi.org/10.1016/j.jhazmat.2020.123838

    Article  CAS  PubMed  Google Scholar 

  21. Molefe LY, Musyoka NM, Ren JW, Langmi HW, Mathe M, Ndungu PG (2021) Effect of inclusion of MOF–polymer composite onto a carbon foam material for hydrogen storage application. J Inorg Organomet Polym 31:80–88. https://doi.org/10.1007/s10904-020-01701-8

    Article  CAS  Google Scholar 

  22. Jia XC, Shen B, Zhang LH, Zheng WG (2021) Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem Eng J 405:126927–126936. https://doi.org/10.1016/j.cej.2020.126927

    Article  CAS  Google Scholar 

  23. Kyotani T (2000) Control of pore structure in carbon. Carbon 38:69–286. https://doi.org/10.1016/S0008-6223(99)00142-6

    Article  Google Scholar 

  24. Ma W, Ding Y, Yang J, Liu X, Lin L (2005) Study of activated carbon supported iron catalysts for the Fischer–Tropsch synthesis. Reac Kinet Catal Lett 84:11–19. https://doi.org/10.1007/s11144-005-0002-2

    Article  CAS  Google Scholar 

  25. Tian ZP, Wang ChG, Si Z, Zhan S, Ma LL, Chen LG, Liu QY, Zhang Q, Huang HY (2017) Fischer–Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal A Gen 541:50–59. https://doi.org/10.1016/j.apcata.2017.05.001

    Article  CAS  Google Scholar 

  26. Wang D, Ji J, Chen B, Chen W, Qian G, Duan X, Zhou X, Holmen A, Chen D, Walmsley JC (2017) Novel Fe/MnK CNTs nanocomposites as catalysts for direct production of lower olefins from syngas. AIChE J 63:154–161. https://doi.org/10.1002/aic.15490

    Article  CAS  Google Scholar 

  27. Torres-Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, De-Jong KP (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. Am Chem Soc 134:16207–16215. https://doi.org/10.1021/ja304958u

    Article  CAS  Google Scholar 

  28. Zakhidov AA, Baunghman RH, Lqbal Z, Cui CX, Khayrullin L, Dantas SO, Marti J, Ralchenko VG (1998) Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282:897–897. https://doi.org/10.1126/science.282.5390.897

    Article  CAS  PubMed  Google Scholar 

  29. Chen YP, Wei JT, Duyar MS, Ordomsky VV, Khodakov AY, Liu J (2021) Carbon-based catalysts for Fischer–Tropsch synthesis. Chem Soc Rev 50:2215–2894. https://doi.org/10.1039/D0CS00905A

    Article  Google Scholar 

  30. Gu B, Ordomsky VV, Bahri M, Ersen O, Chernavskii PA, Filimonov D, Khodakov AY (2018) Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts. Appl Catal B Environ 234:153–166. https://doi.org/10.1016/j.apcatb.2018.04.025

    Article  CAS  Google Scholar 

  31. Inagaki M, Qiu JS, Guo QG (2015) Carbon foam: preparation and application. Carbon 87:128–152. https://doi.org/10.1016/j.carbon.2015.02.021

    Article  CAS  Google Scholar 

  32. Wang YY, Zhou ZH, Zhou CG, Sun WJ, Gao JF, Dai K, Yan DX, Li ZM (2020) Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl Mater Inter 7:8704–8712. https://doi.org/10.1021/acsami.9b21048

    Article  CAS  Google Scholar 

  33. Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon foams prepared from polyimide using urethane foam template. Carbon 42:497–502. https://doi.org/10.1016/j.carbon.2003.12.080

    Article  CAS  Google Scholar 

  34. Malek RMA, Tavasoli A, Dalai KA (2009) Effect of pre-treatment on physico-chemical properties and stability of carbon nanotubes supported iron Fischer–Tropsch catalysts. Appl Catal A Gen 355:33–41. https://doi.org/10.1016/j.apcata.2008.11.023

    Article  CAS  Google Scholar 

  35. Lu FX, Huang JL, Wu Q, Zhang Y (2021) Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins. Appl Catal A Gen 621:118213–118220. https://doi.org/10.1016/j.apcata.2021.118213

    Article  CAS  Google Scholar 

  36. Romero MJV, Cano MAR, Palomo J, Rodríguez-Mirasol J (2021) Carbon-based materials as catalyst supports for Fischer–Tropsch synthesis: a review. Front Mater 7:1–27. https://doi.org/10.3389/fmats.2020.617432

    Article  Google Scholar 

  37. Narasimman R, Prabhakaran K (2012) Preparation of low density carbon foams by foaming molten sucrose using an aluminium nitrate blowing agent. Carbon 50:1999–2009. https://doi.org/10.1016/j.carbon.2011.12.058

    Article  CAS  Google Scholar 

  38. Prabhakaran K, Singh PK, Gokhale NM, Sharma SC (2007) Processing of sucrose to low density carbon foams. J Mater Sci 42:3894–3900. https://doi.org/10.1007/s10853-006-0481-1

    Article  CAS  Google Scholar 

  39. Yang C, Zhao HB, Hou YL, Ma D (2012) Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J Am Chem Soc 134:15814–15821. https://doi.org/10.1021/ja305048p

    Article  CAS  PubMed  Google Scholar 

  40. Zhai P, Xu C, Gao R, Liu X, Li MZ, Li WZ, Fu XP, Chun JJ, Xie JL, Zhao M, Xiao WP, Li YW, Zhang QW, Wen XD, Ma D (2016) Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew Chem Int Ed 55:9902–9907. https://doi.org/10.1002/anie.201603556

    Article  CAS  Google Scholar 

  41. Hou Y, Huang T, Wen Z, Mao S, Cui S, Chen J (2014) Metal-organic framework-derived nitrogen-doped core-shell structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv Energy Mater 4:1400337–1400345. https://doi.org/10.1002/aenm.201400337

    Article  CAS  Google Scholar 

  42. Cao J, Song N, Chen WY, Cao YQ, Qian G, Duan XZ, Zhou XG (2022) Role of C-defective sites in CO adsorption over ε-Fe2C and η- Fe2C Fischer–Tropsch catalysts. Chem Asian J 15:4014–4022. https://doi.org/10.1002/asia.202000995

    Article  CAS  Google Scholar 

  43. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  44. Jiang H, Yao Y, Zhu Y, Liu Y, Su Y, Yang X, Li C (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe–N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl Mater Interfaces 7:21511–21520. https://doi.org/10.1021/acsami.5b06708

    Article  CAS  PubMed  Google Scholar 

  45. Tian ZP, Wang CG, Yue J, Zhang XH, Ma LL (2019) Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catal Sci Technol 9:2728–2741. https://doi.org/10.1039/C9CY00403C

    Article  CAS  Google Scholar 

  46. Gu B, Peron DV, Barrios AJ, Bahri M, Khodakov AY (2020) Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis form syngas. J Am Chem Soc 11:6167–6182. https://doi.org/10.1039/D0SC01600D

    Article  CAS  Google Scholar 

  47. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  48. Zhao Q, Huang S, Han X, Chen J, Ma X (2021) Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer–Tropsch synthesis. Carbon 173:364–375. https://doi.org/10.1016/j.carbon.2020.11.019

    Article  CAS  Google Scholar 

  49. Wei Y, Zhang C, Liu X, Wang Y, Chang Q, Qing M, Wen X, Li Y (2018) Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment. Catal Sci Technol 8:1113–1125. https://doi.org/10.1039/C7CY02449E

    Article  CAS  Google Scholar 

  50. Li T, Virginie M, Khodakov A (2017) Effect of potassium promotion on the structure and performance of alumina supported carburized molybdenum catalysts for Fischer–Tropsch synthesis. Appl Catal A Gen 541:154–162. https://doi.org/10.1016/j.apcata.2017.05.018

    Article  CAS  Google Scholar 

  51. Yu GB, Sun B, Pei Y, Xie SH, Yan SR, Qiao MH, Fan KN, Zhang XX, Zong BN (2010) FexOy@C spheres as an excellent catalyst for Fischer–Tropsch synthesis. J Am Chem Soc 132:935–937. https://doi.org/10.1021/ja906370b

    Article  CAS  PubMed  Google Scholar 

  52. Xu YB, Liu DP, Liu XH (2018) Conversion of syngas toward aromatics over hybrid Fe-based Fischer–Tropsch catalysts and HZSM-5 zeolites. Appl Catal A Gen 552:168–183. https://doi.org/10.1016/j.apcata.2018.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of P. R. China (U20B2022 and 22078006), and Bingtuan Science and Technology Program (2018BC008 and 2021DB006). This work was also supported by CNOOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhu, Z., Zhang, D. et al. Development of iron supported carbon foam catalyst for Fischer–Tropsch synthesis. Reac Kinet Mech Cat 135, 2457–2473 (2022). https://doi.org/10.1007/s11144-022-02248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02248-0

Keywords

Navigation