Skip to main content
Log in

Statistical optimization of process conditions for photocatalytic degradation of phenol with bismuth molybdate photocatalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, a visible light active photocatalyst bismuth molybdate was prepared by the chemical precipitation method. It was characterized using different instrumental techniques such as scanning electron microscope, Fourier transforms infrared spectroscopy, UV–visible spectroscopy (UV–Vis), and X-ray diffraction. The bandgap energy of the photocatalyst was found to be 2.84 eV, which showed it is visible light active material. The prepared catalyst was applied for the photo-degradation of a toxic organic pollutant such as phenol in its aqueous solution under the irradiation of visible light. Different operating degradation parameters were optimized and maximum degradation of up to 91.6% has been observed at pH 3 with a 10 mg/L initial concentration of phenol. The degradation was endothermic and the data of phenol degradation was analyzed by design expert software as well as evaluated statistically using the best-optimized conditions for higher degradation efficiency. Moreover, the data were also analyzed by the application of pseudo-first-order and pseudo-second-order-kinetics non-linear least-square fits and fitted best with pseudo-second-order kinetic. Furthermore, A possible mechanism based on the generation of electron–hole for phenol degradation has also been proposed in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Bouiahya K, Es-saidi I, El Bekkali C et al (2019) Synthesis and properties of alumina-hydroxyapatite composites from natural phosphate for phenol removal from water. Coll Interface Sci Commun 31:100188. https://doi.org/10.1016/j.colcom.2019.100188

    Article  CAS  Google Scholar 

  2. Li J, Chen X, Xu D, Pan K (2019) Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicol Environ Saf 170:716–721. https://doi.org/10.1016/j.ecoenv.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  3. Bin-Dahman OA, Saleh TA (2020) Synthesis of carbon nanotubes grafted with PEG and its efficiency for the removal of phenol from industrial wastewater. Environ Nanotechnnol Monit Manag 13:100286. https://doi.org/10.1016/j.enmm.2020.100286

    Article  Google Scholar 

  4. Nasiri EF, Kebria DY, Qaderi F (2018) An experimental study on the simultaneous phenol and chromium removal from water using titanium dioxide photocatalyst. Civ Eng J 4(3):585–593. https://doi.org/10.28991/cej-0309117

    Article  Google Scholar 

  5. Kundu S, Chowdhury IH, Naskar MK (2018) Hierarchical porous carbon nanospheres for efficient removal of toxic organic water contaminants of phenol and methylene blue. J Chem Eng Data 63(3):559–573. https://doi.org/10.1021/acs.jced.7b00745

    Article  CAS  Google Scholar 

  6. Salari M, Dehghani MH, Azari A et al (2019) High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm. J Mol Liq 285:146–157. https://doi.org/10.1016/j.molliq.2019.04.065

    Article  CAS  Google Scholar 

  7. Rawat S, Singh J, Koduru JR (2021) Effect of ultrasonic waves on degradation of phenol and para-nitrophenol by iron nanoparticles synthesized from Jatropha leaf extract. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101857

    Article  Google Scholar 

  8. Li H, Meng F, Duan W et al (2019) Biodegradation of phenol in saline or hypersaline environments by bacteria: a review. Ecotoxicol Environ Saf 184:109658. https://doi.org/10.1016/j.ecoenv.2019.109658

    Article  CAS  PubMed  Google Scholar 

  9. Lee CG, Hong SH, Hong SG et al (2019) Production of biochar from food waste and its application for phenol removal from aqueous solution. Water Air Soil Pollut 230(3):1–13. https://doi.org/10.1007/s11270-019-4125-x

    Article  CAS  Google Scholar 

  10. Yadav N, Maddheshiaya ND, Rawat S et al (2020) Adsorption and equilibrium studies of phenol and para-nitrophenol by magnetic activated carbon synthesised from cauliflower waste. Environ Eng Res 25(5):742–752. https://doi.org/10.4491/eer.2019.238

    Article  Google Scholar 

  11. Iervolino G, Vaiano V, Palma V (2019) Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor. Sep Purif Technol 215:155–162. https://doi.org/10.1016/j.seppur.2019.01.007

    Article  CAS  Google Scholar 

  12. Mansur AA, Mansur HS, Ramanery FP et al (2014) “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: study of the photodegradation of organic dye pollutants. Appl Catal B Environ 158:269–279. https://doi.org/10.1016/j.apcatb.2014.04.026

    Article  CAS  Google Scholar 

  13. Jiang C, Chen W, Zheng WH et al (2019) Advances in asymmetric visible-light photocatalysis, 2015–2019. Org Biomol Chem 17(38):8673–8689. https://doi.org/10.1039/c9ob01609k

    Article  CAS  PubMed  Google Scholar 

  14. Zhu D, Zhou Q (2019) Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118426

    Article  Google Scholar 

  15. Norouzi M, Fazeli A, Tavakoli O (2020) Phenol contaminated water treatment by photocatalytic degradation on electrospun Ag/TiO2 nanofibers: optimization by the response surface method. J Water Process Eng 37:101489. https://doi.org/10.1016/j.jwpe.2020.101489

    Article  Google Scholar 

  16. Zakaria WFW, Jalil AA, Hassan NS et al (2020) Visible-light driven photodegradation of phenol over niobium oxide-loaded fibrous silica titania composite catalyst. J Chem Technol Biotechnol 95(10):2638–2647. https://doi.org/10.1002/jctb.6523

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhao C, Duan Y et al (2020) Phosphorus-doped TiO2 for visible light-driven oxidative coupling of benzyl amines and photodegradation of phenol. Appl Surf Sci 527:146693. https://doi.org/10.1016/j.apsusc.2020.146693

    Article  CAS  Google Scholar 

  18. Song L, Qiu R, Mo Y et al (2007) Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun 8(3):429–433. https://doi.org/10.1016/j.catcom.2006.07.001

    Article  CAS  Google Scholar 

  19. Wang W, Serp P, Kalck P et al (2005) Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J Mol Catal A Chem 235(1–2):194–199. https://doi.org/10.1016/j.molcata.2005.02.027

    Article  CAS  Google Scholar 

  20. Qian D, Zhong S, Wang S et al (2017) Promotion of phenol photodegradation based on novel self-assembled magnetic bismuth oxyiodide core–shell microspheres. RSC Adv 7(58):36653–36661. https://doi.org/10.1039/C7RA06116A

    Article  CAS  Google Scholar 

  21. Li H, Li W, Liu X, Ren C et al (2018) Fabrication of bismuth molybdate photocatalyst co-substituted by gadolinium and tungsten for bismuth and molybdenum: design and radical regulating by the synergistic effect of redox centers and oxygen vacancies for boosting photocatalytic activity. J Taiwan Inst Chem Eng 89:86–94. https://doi.org/10.1016/j.jtice.2018.04.014

    Article  CAS  Google Scholar 

  22. Reddy PVL, Kim KH, Kavitha B et al (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Manag 213:189–205. https://doi.org/10.1016/j.jenvman.2018.02.059

    Article  CAS  Google Scholar 

  23. Yang G, Liang Y, Li K et al (2020) Engineering the dimension and crystal structure of bismuth molybdate photocatalysts via a molten salt-assisted assembly approach. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.15623

    Article  Google Scholar 

  24. Lavakusa B, Devi DR, Belachew N, Basavaiah K (2020) Selective synthesis of visible light active g-bismuth molybdate nanoparticles for efficient photocatalytic degradation of methylene blue, reduction of 4-nitrophenol, and antimicrobial activity. RSC Adv 10:36636. https://doi.org/10.1039/D0RA07459D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng L, Liu L, Wang D et al (2019) Synthesis of bismuth molybdate photocatalysts for CO2 photo-reduction. J CO2 Util 29:196–204. https://doi.org/10.1016/j.jcou.2018.12.013

    Article  CAS  Google Scholar 

  26. Li G, Yang W, Gao S et al (2021) Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination. Chem Eng J 404:127115. https://doi.org/10.1016/j.cej.2020.127115

    Article  CAS  Google Scholar 

  27. Li Y, Hui B, Gao L et al (2018) Facile one-pot synthesis of wood based bismuth molybdate nano-eggshells with efficient visible-light photocatalytic activity. Coll Surf A 556:284–290. https://doi.org/10.1016/j.colsurfa.2018.08.04

    Article  CAS  Google Scholar 

  28. Abazari R, Mahjoub AR, Shariati J et al (2019) Photocatalytic wastewater purification under visible light irradiation using bismuth molybdate hollow microspheres with high surface area. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.03.008

    Article  Google Scholar 

  29. Phasayavan W, Japa M, Pornsuwan S et al (2020) Oxygen-deficient bismuth molybdate nanocatalysts: synergistic effects in boosting photocatalytic oxidative coupling of benzylamine and mechanistic insight. J Coll Interface Sci. https://doi.org/10.1016/j.jcis.2020.07.140

    Article  Google Scholar 

  30. Peng Y, Liu Q, Zhang J et al (2018) Enhanced visible-light-driven photocatalytic activity by 0D/ 2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates. J Phys Chem C 122:3738–3747. https://doi.org/10.1021/acs.jpcc.7b11567

    Article  CAS  Google Scholar 

  31. Li C, Chen G, Sun J, Rao J et al (2015) A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl Mater Interfaces 7:25716–25724. https://doi.org/10.1021/acsami.5b06995

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Yang W, Gao S et al (2018) Synthesis of Bi2-MoO6 nanosheets with rich oxygen vacancies by post-synthesis etching treatment for enhanced photocatalytic performance. ACS Appl Nano Mater 1:3565–3578. https://doi.org/10.1021/acsanm.8b00719

    Article  CAS  Google Scholar 

  33. Fang G, Liu J, Yan X et al (2018) Highly efficient visible-light photocatalytic activities in self-assembled metastable TiO2/Bi4MoO9 heterojunctions. Adv Mater Interfaces 5:1–9. https://doi.org/10.1002/admi.201800844

    Article  CAS  Google Scholar 

  34. Chen SS, Hu C, Liu CH et al (2020) De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. J Hazard Mater 397:122431. https://doi.org/10.1016/j.jhazmat.2020.122431

    Article  CAS  PubMed  Google Scholar 

  35. Rawat S, Samreen K, Nayak AK et al (2021) Fabrication of iron nanoparticles using Parthenium: a combinatorial eco-innovative approach to eradicate crystal violet dye and phosphate from the aqueous environment. Environ Nanotechnol Monit Manag 15:100426. https://doi.org/10.1016/j.enmm.2021.100426

    Article  CAS  Google Scholar 

  36. Yang R, Zhao Q, Liu B (2020) Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light. J Mater Sci Mater Electron 31:5054–5067. https://doi.org/10.1007/s10854-020-03040-3

    Article  CAS  Google Scholar 

  37. Ren J, Wang W, Shang M, Sun S et al (2011) Heterostructured Bismuth molybdate composite: preparation and improved photocatalytic activity under visible-light irradiation. ACS Appl Mater Interfaces 3:2529–2533. https://doi.org/10.1021/am200393h

    Article  CAS  PubMed  Google Scholar 

  38. Zheng Y, Duan F, Wu J et al (2009) Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed 010 surface under visible light irradiation. J Mol Catal A Chem 303:9–14. https://doi.org/10.1016/j.molcata.2008.12.010

    Article  CAS  Google Scholar 

  39. Xu J, Yue J, Niu J et al (2019) Synergistic removal of Cr(VI) and dye contaminants by 0D/2D bismuth molybdate homojunction photocatalyst under visible light. Appl Surf Sci 484:1080–1088. https://doi.org/10.1016/j.apsusc.2019.04.146

    Article  CAS  Google Scholar 

  40. Barakat MA, Schaeffer H, Hayes G et al (2004) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B 57:23–30. https://doi.org/10.1016/j.apcatb.2004.10.001

    Article  CAS  Google Scholar 

  41. Barakat MA, Tseng JM, Huang CP (2005) Hydrogen peroxideassisted photocatalytic oxidation of phenolic compounds. Appl Catal B 59:99–104. https://doi.org/10.1016/j.apcatb.2005.01.004

    Article  CAS  Google Scholar 

  42. Chen SF, Liu YZ (2007) Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 67(5):1010–1017. https://doi.org/10.1016/j.chemosphere.2006.10.054

    Article  CAS  PubMed  Google Scholar 

  43. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals progress and problems. J Photochem Photobiol C 9(1):1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  44. Naeem K, Feng O (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci 21:527–533. https://doi.org/10.1016/S1001-0742(08)62303-7

    Article  CAS  Google Scholar 

  45. Mishra S, Yadav SS, Rawat S et al (2019) Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J Environ Manag 246:362–373. https://doi.org/10.1016/j.jenvman.2019.06.013

    Article  CAS  Google Scholar 

  46. Barakat MA, Al-Hutailah RI, Qayyum E et al (2013) Pt nanoparticles/TiO2 for photocatalytic degradation of phenols in wastewater. Environ Technol 35(2):137–144. https://doi.org/10.1080/09593330.2013.820796

    Article  CAS  Google Scholar 

  47. Choquette-Labbé M, Shewa WA, Lalman JA et al (2014) Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology. Water 6(6):1785–1806. https://doi.org/10.3390/w6061785

    Article  CAS  Google Scholar 

  48. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  49. Shu YJ, Yan SR, Dong KJ et al (2018) Preparation of novel mesoporous photocatalyst Bi4O5Br2/SBA-15 with enhanced visible-light catalytic activity. Open J Appl Sci 8:532–544. https://doi.org/10.4236/ojapps.2018.811043

    Article  CAS  Google Scholar 

  50. Li Z, Meng X, Zhang Z (2018) Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: a Z-scheme visible-light photocatalyst with enhanced activity. Catal Today 315:67–68. https://doi.org/10.1016/j.cattod.2018.03.014

    Article  CAS  Google Scholar 

  51. Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Coll Interface Sci 357:163–167. https://doi.org/10.1016/j.jcis.2011.01.093

    Article  CAS  Google Scholar 

  52. Phuruangrat A, Jitrou P, Dumrongrojthanath P et al (2013) Hydrothermal synthesis and characterization of Bi2MoO6 nanoplates and their photocatalytic activities. J Nanomater. https://doi.org/10.1155/2013/789705

    Article  Google Scholar 

  53. Zulfiqar M, Ridhwan Samsudin MF, Sufian S (2019) Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: an insight into response surface methodology and artificial neural network. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2019.112039

    Article  Google Scholar 

  54. Wang W, Ye Y, Feng J et al (2015) Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew Chem Int Ed 54(4):1321–1326. https://doi.org/10.1002/anie.201410408

    Article  CAS  Google Scholar 

  55. Chiu YH, Chang TFM, Chen CY et al (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5):430. https://doi.org/10.3390/catal9050430

    Article  CAS  Google Scholar 

  56. Zhao GQ, Hu J, Zou J et al (2022) Modulation of BiOBr-based photocatalysts for energy and environmental application: a critical review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107226

    Article  Google Scholar 

  57. Ahsaine HA, Slassi A, Ezahri M et al (2016) Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv 6(103):101105–101114. https://doi.org/10.1039/C6RA22669H

    Article  CAS  Google Scholar 

  58. Yang C, He Y, Zhong J et al (2022) Photocatalytic performance of rich OVs-BiOCl modified by polyphenylene sulfide. Adv Powder Technol 33(1):103427. https://doi.org/10.1016/j.apt.2022.103427

    Article  CAS  Google Scholar 

  59. Ahsaine HA (2020) UV-light photocatalytic properties of the bismuth lutetium tungstate system Bi2-xLuxWO6 (0≤ x≤ 1). Mater Lett 276:128221. https://doi.org/10.1016/j.matlet.2020.128221

    Article  CAS  Google Scholar 

  60. Ahsaine HA, Ezahri M, Benlhachemi A et al (2016) Novel Lu-doped Bi2WO6 nanosheets: synthesis, growth mechanisms and enhanced photocatalytic activity under UV-light irradiation. Ceram Int 42(7):8552–8558. https://doi.org/10.1016/j.ceramint.2016.02.082

    Article  CAS  Google Scholar 

Download references

Funding

Non-financial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Garg.

Ethics declarations

Conflict of interest/competing interests

All the authors declared that they have no conflict of interest.

Research involving humans and animals statement

None.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, B.K., Gautam, M.K., Rawat, S. et al. Statistical optimization of process conditions for photocatalytic degradation of phenol with bismuth molybdate photocatalyst. Reac Kinet Mech Cat 135, 2175–2194 (2022). https://doi.org/10.1007/s11144-022-02236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02236-4

Keywords

Navigation