Skip to main content
Log in

Efficient catalytic dehydration of fructose into 5-hydroxymethylfurfural by carbon dioxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

To enhance the selective fructose dehydration to 5-hydroxymethylfurfural (HMF), an efficient dehydration of fructose to 5-HMF in H2O-MIBK- pressured CO2 in 20 min at 200 °C with a better product yield of 85.6% and 89.1% product selectivity was achieved. The high activity attributed to the combination of the weak acidity by CO2 dissolved in the water and the efficient separation of fructose with 5-HMF in this H2O-MIBK two-phase system. The possible reaction mechanism is discussed. It was found that the solvents ratio was the one of key factors determining the yield of target products. Compared to the related reported results in the reaction, this process characterized of more favorable product yield and higher selectivity, it can be considered as a potential technique for the scale-up production of 5-HMF from fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All date that supports the conclusions are provided in the manuscript.

References

  1. Mantovani M, Mandelli D, Gonçalves M, Carvalho WA (2018) Fructose dehydration promoted by acidic catalysts obtained from biodiesel waste. Chem Eng J 348:860–869

    Article  CAS  Google Scholar 

  2. Rathod PV, Mujmule RB, Chung WJ, Jadhav AR, Kim H (2019) Efficient dehydration of glucose, sucrose, and fructose to 5-hydroxymethylfurfural using tri-cationic ionic liquids. Catal Lett 149:672–687

    Article  CAS  Google Scholar 

  3. Jia S, He X, Ma J, Wang K, Xu Z, Zhang ZC (2018) Efficient synthesis of 5-hydroxymethyl-furfural from mannose with a reusable MCM-41-supported tin catalyst. Catal Sci Technol 8:5526–5534

    Article  CAS  Google Scholar 

  4. Widsten P, Murton K, West M (2018) Production of 5-hydroxymethylfurfural and furfural from a mixed saccharide feedstock in biphasic solvent systems. Ind Crops Prod 119:237–242

    Article  CAS  Google Scholar 

  5. Haworth WN, Jones WGM, Wiggins LF (1945) The conversion of sucrose into furan compounds. Part II. Some 2: 5-disubstituted tetrahydrofurans and their products of ring scission. J Chem Soc 1:1–4

    Article  Google Scholar 

  6. Zhao J, Zhou C, He C, Dai Y, Jia X, Yang Y (2016) Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catal Today 264:123–130

    Article  CAS  Google Scholar 

  7. Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind Eng Chem Res 45:2163–2173

    Article  CAS  Google Scholar 

  8. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  Google Scholar 

  9. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  CAS  Google Scholar 

  10. Sievers C, Musin I, Marzialetti T, Olarte MBV, Agrawal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem 2:665–671

    Article  CAS  Google Scholar 

  11. Zhang Z, Liu B, Zhao ZK (2012) Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by Hafnium(IV) chloride in ionic liquids. Starch/Staerke 64:770–775

    Article  CAS  Google Scholar 

  12. Li Y, Lu X, Yuan L, Liu X (2009) Fructose decomposition kinetics in organic acids-enriched high temperature liquid water. Biomass Bioenergy 33:1182–1187

    Article  CAS  Google Scholar 

  13. Yang Y, Hu CW, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513

    Article  Google Scholar 

  14. Kraus GA, Guney T (2012) A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids. Green Chem 14:1593–1596

    Article  CAS  Google Scholar 

  15. Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxy-methylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172

    Article  CAS  Google Scholar 

  16. Zhou L, Liang R, Ma Z, Wu T, Wu Y (2013) Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour Technol 129:450–455

    Article  CAS  Google Scholar 

  17. Okano T, Qiao K, Bao Q, Tomida D, Hagiwara H, Yokoyama C (2013) Dehydration of fructose to 5-hydroxymethylfurfural (HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids. Appl Catal A 451:1–5

    Article  CAS  Google Scholar 

  18. Jadhav AH, Chinnappan A, Patil RH, Kostjuk SV, Kim H (2014) Green chemical conversion of fructose into 5-hydroxymethylfurfural (HMF) using unsymmetrical dicationic ionic liquids under mild reaction condition. Chem Eng J 243:92–98

    Article  CAS  Google Scholar 

  19. Wang ZK, Shen XJ, Chen JJ (2018) Lignocellulose fractionation into furfural and glucose by AlCl3-catalyzed DES/MIBK biphasic pretreatment. Int J Biol Macromol 117:721–726

    Article  CAS  Google Scholar 

  20. Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y (2012) Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chem Commun 48:5494–5496

    Article  CAS  Google Scholar 

  21. Assanosi AA, Farah MM, Wood J, Al-Duri B (2014) A facile acidic choline chloride-p-TSA DES-catalysed dehydration of fructose to 5-hydroxymethylfurfural. RSC Adv 4:39359–39364

    Article  CAS  Google Scholar 

  22. Liu F, Barrault J, De Oliveira VK, Jérôme F (2012) Dehydration of highly concentrated solutions of fructose to 5-hydroxymethylfurfural in a cheap and sustainable choline chloride/carbon dioxide system. ChemSusChem 5:1223–1226

    Article  CAS  Google Scholar 

  23. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948–1954

    Article  CAS  Google Scholar 

  24. Lin H, Xiong Q, Zhao Y, Chen J, Wang S (2017) Conversion of carbohydrates into 5-hydroxymethylfurfural in a green reaction system of CO2-water-isopropanol. AIChE J 63:257–265

    Article  CAS  Google Scholar 

  25. Morais ARC, Matuchaki MDDJ, Andreaus J, Bogel-Lukasik R (2016) A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst. Green Chem 18:2985–2994

    Article  CAS  Google Scholar 

  26. Morais ARC, Mata AC, Bogel-Lukasik R (2014) Integrated conversion of agroindustrial residue with high pressure CO2 within the biorefinery concept. Green Chem 16:4312–4322

    Article  CAS  Google Scholar 

  27. Da Silva SPM, Morais ARC, Bogel-Łukasik R (2014) The CO2-assisted autohydrolysis of wheat straw. Green Chem 16:238–246

    Article  Google Scholar 

  28. Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA (2010) Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Appl Catal A 388:141–148

    Article  CAS  Google Scholar 

  29. Baranenko VI, Falkovskii LN, Kirov VS, Kurnyk LN, Musienko AN, Piontkovskii AI (1990) Solubility of oxygen and carbon dioxide in water. Sov At Energy 68:342–346

    Article  Google Scholar 

  30. Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catal Sci Technol 4:333–342

    Article  CAS  Google Scholar 

  31. Kiepe J, Horstmann S, Fischer K, Gmehling J (2002) Experimental determination and prediction of gas solubility data for CO2 + H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa. Ind Eng Chem Res 41:4393–4398

    Article  CAS  Google Scholar 

  32. Rackemann DW, Doherty WO (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214

    Article  CAS  Google Scholar 

  33. Zhao H, Holladay JE, Brown H, Zhang ZC (2017) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  Google Scholar 

  34. Lecomte J, Finiels A, Moreau C (1999) A new selective route to 5-hydroxymethylfurfural from furfural and furfural derivatives over microporous solid acidic catalysts. Ind Crops Prod 9:235–241

    Article  CAS  Google Scholar 

  35. Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:2888–2895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, C. & Zhang, L. Efficient catalytic dehydration of fructose into 5-hydroxymethylfurfural by carbon dioxide. Reac Kinet Mech Cat 135, 1957–1970 (2022). https://doi.org/10.1007/s11144-022-02222-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02222-w

Keywords

Navigation