Skip to main content
Log in

Kinetic studies on the effect of mixed organic substrates on Briggs–Rauscher oscillatory reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Experimental studies on BR system employing mixed organic substrates and Mn(II) as the catalyst are reported keeping Malonic acid as the common substrate whereas itaconic acid, citraconic acid (CsA) and mesaconic acid (MsA) act as the co-substrates. It may be noted that no oscillations were observed when the co-substrates were used alone and the addition of these to the main system provides different modes of oscillatory behavior such as entrainment, independent, partial inhibition or complete inhibition. The oscillatory parameters like induction period, time period and iodide ion concentration show a different trend while changing the concentrations of mixed organic substrates, potassium iodate, manganese (II) sulfate, hydrogen peroxide and sulfuric acid. The favorable reaction conditions and most appropriate reagent concentrations for optimal oscillatory behavior of the system under investigation are reported. The effect of organic substrates on Dushman reaction, which is one of the essential reaction steps in BR system, has been investigated using spectrophotometry and cyclic voltammetry. Further, the EPR studies indicate the important role of free radicals in influencing the reaction dynamics. Further, the rate of iodination reaction of the organic substrates is dependent on their structure/available reaction sites for iodination and as such this work proposes a new approach to distinguish between cis/trans (CsA/MsA) isomers using spectrophotometry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Datt AK (2002) The effect of diffusion on the Hopf-bifurcation in a model glycolytic reaction exhibiting oscillations. Chem Phy Lett 357:341–345

    Article  Google Scholar 

  2. Adamcikova L, Farbulova Z, Sevcik P (2001) Dynamic behavior during the oxidation of phenol with bromate in a closed reactor. New J Chem 25:487–490

    Article  CAS  Google Scholar 

  3. Biswas S, Mukherjee K, Mukherjee DC, Moulik SP (2001) Belousov-Zhabotinsky oscillations in bromate-oxalic acid-MnSO4-H2SO4-acetone system in nonionic surfactant medium. A calorimetric study. J Phys Chem A 105:8857–8863

    Article  CAS  Google Scholar 

  4. Berenstein I, Agreda J, Barragan D (1999) Induction period in the Br O3-, Ce(III), H2SO4, oxalic acid and ketone oscillating reaction. Phys Chem Chem Phys 1:4601–4603

    Article  CAS  Google Scholar 

  5. Lateef S, Ganaie NB, Peerzada GM (2021) Perturbation on dynamics of ferroin-catalyzed Belousov-Zhabotinsky reaction by monomer N-isopropylacrylamide and poly(N-isopropylacrylamide). Polym Bull. https://doi.org/10.1007/s00289-021-03660-7

    Article  Google Scholar 

  6. Rastogi RP, Yadava RD (1985) Bistability in BZ oscillators with mixed organic substrates. Indian J Chem A 24:995–998

    Google Scholar 

  7. Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Edu 50:496

    Article  CAS  Google Scholar 

  8. Cooke DO (1976) Observations on the hydrogen peroxide-iodic acid-manganese(II)-organic species oscillating system. React Kinet Mech Catal 3:329–336

    Article  Google Scholar 

  9. Roux JC, Vidal C (1979) Quantitative study of a chemical oscillation. In: Pacault A, Vidal C (eds) Synergetics. Springer Series in Synergetics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67262-0_7

  10. Roux JC, Vidal C (1979) Sur une méthode d’étude experimentale des réactions périodiques. Nouv J Chim 3:247

    CAS  Google Scholar 

  11. Pacault A, De Kepper P, Hanusse P, Rossi A (1975) Etude d’une reaction chimique periodic Diagramme des Etas. C R Acad Sci Paris Ser C 281:215–220

    CAS  Google Scholar 

  12. De Kepper P (1978) Contribution a letude de systems dissipatifs chimiques: reactions oscillantes de Briggs-Rauscher et de Belousov-Zhabotinskii. Thesis, University of Bordeaux I

  13. Boissonade J, De Kepper P (1980) Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system. J Phys Chem 84:501–506

    Article  CAS  Google Scholar 

  14. Furrow SD, Noyes RM (1982) The oscillatory Briggs-Rauscher reaction. 1. Examination of subsystems. J Am Chem Soc 104:38–42

    Article  CAS  Google Scholar 

  15. Furrow SD (1987) Reactions of iodine intermediates in iodate-hydrogen peroxide oscillators. J Phys Chem 91:2129–2135

    Article  CAS  Google Scholar 

  16. Furrow SD (1995) Comparison of several substrates in the Briggs-Rauscher oscillating system. J Phys Chem 99:11131–11140

    Article  CAS  Google Scholar 

  17. Vukojevic V, Sorenson PG, Hynne F (1996) Predictive value of a model of the Briggs−Rauscher reaction fitted to quenching experiments. J Phys Chem 100:17175–17185

    Article  CAS  Google Scholar 

  18. Turanyi T (1991) Rate sensitivity analysis of a model of the Briggs-Rauscher reaction. React Kinet Mech Catal 45:235–241

    Article  CAS  Google Scholar 

  19. Millett I, Vance W, Ross J (1999) Measurements of phase response in an oscillatory reaction and deduction of components of the adjoint eigenvector. J Phys Chem A 103:8252–8256

    Article  CAS  Google Scholar 

  20. De Kepper P, Epstein IR (1982) Mechanistic study of oscillations and bistability in the Briggs-Rauscher reaction. J Am Chem Soc 104:49–55

    Article  Google Scholar 

  21. Lawson T, Fulop J, Wittmann M, Noszticzius Z, Muntean N, Szabo G, Onel L (2009) Iodomalonic acid as an anti-inhibitor in the resorcinol inhibited Briggs-Rauscher reaction. J Phys Chem A 113:14095–14098

    Article  CAS  Google Scholar 

  22. Furrow SD, Aurentz DJ (2010) Reactions of iodomalonic acid, diiodomalonic acid, and other organics in the Briggs-Rauscher oscillating system. J Phys Chem A 114:2526–2533

    Article  CAS  Google Scholar 

  23. Cervellati R, Honer K, Furrow SD, Neddens C, Costa S (2001) The Briggs-Rauscher reaction as a test to measure the activity of antioxidants. Helv Chem Acta 84:3533–3547

    Article  CAS  Google Scholar 

  24. Cervellati R, Honer K, Furrow SD, Mazzanti F, Costa S (2004) An experimental and mechanistic investigation of the complexities arising during inhibition of the Briggs-Rauscher reaction by antioxidants. Helv Chem Acta 87:133–155

    Article  CAS  Google Scholar 

  25. Zhang Y, Hu G, Hu L, Song J (2015) Identification of two aliphatic position isomers between α- and β-ketoglutaric acid by using a Briggs-Rauscher oscillating system. Anal Chem 87:10040–10046

    Article  CAS  Google Scholar 

  26. Cooke DO (1975) Preliminary investigations of the hydrogen peroxide-iodic acid-manganese(II)-malonic acid oscillating system. React Kinet Catal Lett 3:377–384

    Article  CAS  Google Scholar 

  27. Cooke DO (1979) Homogeneous liquid phase inorganic oscillatory reactions: chemical aspects. Prog React Kinet 8:185–229

    Google Scholar 

  28. Cooke DO (1979) Iodine concentration behaviour of the hydrogen peroxide-iodic acid- manganese(II)-malonic acid oscillating system. Inorg Chim Acta 37:259–265

    Article  CAS  Google Scholar 

  29. Cooke DO (1980) On the effect of copper (II) and chloride ions on the iodate-hydrogen peroxide reaction in the presence and absence of manganese (II). Int J Chem Kinet 12:671–681

    Article  CAS  Google Scholar 

  30. Kim KR, Lee DJ, Shin KJ (2002) A simplified model for the Briggs-Rauscher reaction mechanism. J Chem Phys 117:2710–2717

    Article  CAS  Google Scholar 

  31. Gull U, Peerzada GM, Ganaie NB, Dar NA (2013) Effect of initial substrate concentrations and temperature on the oscillatory behavior of Phloroglucinol-based Belousov Zhabotinsky reaction. Bull Chem Soc Jpn 86:266–272

    Article  CAS  Google Scholar 

  32. Shah IA, Peerzada GM, Ganaie NB, Dar NA (2013) A kinetic study on the catechol based Belousov-Zhabotinsky reaction. Int J Chem Kinet 45:141–151

    Article  CAS  Google Scholar 

  33. Suzuki D, Yoshida R (2008) Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system. J Phys Chem B 112:12618–12624

    Article  CAS  Google Scholar 

  34. Smoes ML (1979) Period of homogenous oscillations in the ferroin-catalyzed Zhabotinskii system. J Phys Chem 71:4669–4671

    Article  CAS  Google Scholar 

  35. Schmitz G, Furrow S (2012) Kinetics of the iodate reduction by hydrogen peroxide and relation with the Briggs-Rauscher and Bray-Liebhafsky oscillating reactions. Phys Chem Chem Phys 14:5711–5717

    Article  CAS  Google Scholar 

  36. Pagnacco MC, Mojovic MD, Popovic-Bijelic AD, Horvath AK (2017) Investigation of the halogenate-hydrogen peroxide reactions using the electron paramagnetic resonance spin trapping technique. J Phys Chem A 121:3207–3212

    Article  CAS  Google Scholar 

  37. Cseko G, Varga D, Horvath AK, Nagypal I (2008) Simultaneous investigation of the Landolt and Dushman reactions. J Phys Chem A 112:5954–5959

    Article  CAS  Google Scholar 

  38. Valkai L, Horváth AK (2016) Compatible mechanism for a simultaneous description of the roebuck, Dushman, and iodate-arsenous acid reactions in an acidic medium. Inorg Chem 55:1595–1603

    Article  CAS  Google Scholar 

  39. Iwamoto RT (1959) Solvent effects on the electro-oxidation of iodide ion. Anal Chem 31:955

    Article  CAS  Google Scholar 

  40. Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J (2015) Voltammetric determination of the iodide/iodine formal potential and triiodide stability constant in conventional and ionic liquid media. J Phy Chem C 119:22392–22403

    Article  CAS  Google Scholar 

  41. Schmitz G (2000) Kinetics of the Dushman reaction at low I concentrations. Phys Chem Chem Phys 2:4041–4044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Chemistry, University of Kashmir for infrastructural facilities used for carrying out this work. The authors also declare that they have no conflict of interest with anybody regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Bashir Ganaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1025 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhad, N.A.D., Peerzada, G.M. & Ganaie, N.B. Kinetic studies on the effect of mixed organic substrates on Briggs–Rauscher oscillatory reaction. Reac Kinet Mech Cat 135, 1313–1334 (2022). https://doi.org/10.1007/s11144-022-02174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02174-1

Keywords

Navigation