Skip to main content
Log in

Efficient conversion of xylan and rice husk to furfural over immobilized imidazolium acidic ionic liquids

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, three immobilized imidazolium acidic ionic liquid catalysts (ImmHSO4-IL, ImmCH3SO3-IL and ImmH2PO4-IL) were prepared with silica as carrier and modified with H2SO4, CH3SO3H and H3PO4, which were used as catalysts in the production of furfural from xylan and rice husk. The characteristics of the synthesized catalysts were analyzed by various characterization techniques, and the effects of reaction conditions, including reaction solvent, reaction time, reaction temperature and the amount of catalyst on the yield of furfural were studied in detail. The results showed that the highest yield of furfural reached 72% and 74.6% when using xylan and rice husk as substrates, respectively, which is one of the best furfural yield among literature reports. In addition, the ImmHSO4-IL catalyst has excellent selectivity for hemicellulose in rice husk, and the catalyst has high catalytic activity after four cycles. Therefore, the application of ImmHSO4-IL catalyst provides a new approach for conversion biomass to furfural.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mukherjee A, Dumont MJ, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenerg 72:143–183

    Article  CAS  Google Scholar 

  2. Sivec R, Grilc M, Hus M, Likozar B (2019) Multiscale modeling of (Hemi) cellulose hydrolysis and cascade hydrotreatment of 5-hydroxymethylfurfural, furfural, and levulinic acid. Ind Eng Chem Res 58:16018–16032

    Article  CAS  Google Scholar 

  3. Wu C, Yuan W, Huang Y, Xia Y, Yang H, Wang H, Liu X (2017) Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic γ-Al2O3. Catal Lett 147:953–963

    Article  CAS  Google Scholar 

  4. Liu L, Li Z, Hou W, Shen H (2018) Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohyd Polym 181:778–784

    Article  CAS  Google Scholar 

  5. Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2010) Furfural: hemicellulose/xylose derived biochemical. Biofuel Bioprod Bior 2:438–454

    Article  CAS  Google Scholar 

  6. Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crop Prod 7:95–99

    Article  CAS  Google Scholar 

  7. Yemi O, Mazza G (2011) Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour Technol 102:7371–7378

    Article  CAS  Google Scholar 

  8. da Silva MJ, Lopes NPG, Bruziquesi CGO (2021) Furfural acetalization over Keggin heteropolyacid salts at room temperature: effect of cesium doping. React Kinet Mech Cat 133:913–931

    Article  CAS  Google Scholar 

  9. Mariscal R, Sadaba I, Granados L (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  10. Xu SQ, Pan DH, Wu YF, Fan JD, Wu NX, Gao LJ, Li WQ, Xiao GM (2019) Catalytic conversion of xylose and xylan into furfural over Cr3+/P-SBA-15 catalyst derived from spent adsorbent. Ind Eng Chem Res 58:13013–13020

    Article  CAS  Google Scholar 

  11. Hoang PH, Cuong TD, Dien LQ (2021) Ultrasound assisted conversion of corncob-derived xylan to furfural under HSO3-ZSM-5 zeolite catalyst. Waste Biomass Valoriz 12:1955–1962

    Article  CAS  Google Scholar 

  12. Xun H, Westerhof R, Dong D, Wu L, Li CZ (2014) Acid-catalyzed conversion of xylose in 20 solvents: Insight into interactions of the solvents with xylose, furfural, and the acid catalyst. ACS Sustain Chem Eng 2:2562–2575

    Article  CAS  Google Scholar 

  13. Sievers C, Musin I, Marzialetti T, Olarte M, Agrawal P, Jones C (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. Chemsuschem 2:665–671

    Article  CAS  PubMed  Google Scholar 

  14. Mao L, Zhang L, Gao N, Li A (2012) FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour Technol 123:324–331

    Article  CAS  PubMed  Google Scholar 

  15. Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229:414–423

    Article  CAS  Google Scholar 

  16. Zhang Q, Wei H, Li J, Zhao X, Luo J (2017) One-pot synthesis of benzopyrans catalyzed by silica supported dual acidic ionic liquid under solvent-free conditions. Heterocycl Commun 23:411–414

    CAS  Google Scholar 

  17. Dong F, Jun L, Zhou XL, Liu ZL (2007) Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catal Lett 116:76–80

    Article  CAS  Google Scholar 

  18. Xie H, Lv L, Zhang T, Tang SW (2021) Reaction kinetics of trioxane synthesis from formaldehyde catalyzed by sulfuric acid/ionic liquid. React Kinet Mech Cat 133:825–840

    Article  CAS  Google Scholar 

  19. Elsayed I, Mashaly M, Eltaweel F, Jackson MA, Hassan EB (2018) Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel 221:407–416

    Article  CAS  Google Scholar 

  20. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2016) Furfural production using ionic liquids: a review. Bioresour Technol 202:181–191

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Xu H, Lu KF, Qu Y, Zhu LJ, Wang SR (2019) Dehydration of xylose to furfural in butanone catalyzed by Brønsted-Lewis acidic ionic liquids. Energy Sci Eng 7:2237–2246

    Article  CAS  Google Scholar 

  22. Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A 363:93–99

    Article  CAS  Google Scholar 

  23. Wang SR, Zhao Y, Lin HZ, Chen JP, Zhu LJ, Luo ZY (2017) Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone. Green Chem 19:3869–3879

    Article  CAS  Google Scholar 

  24. Zhang SG, Zhang JH, Zhang Y, Deng YQ (2017) Nanoconfined ionic liquids. Chem Rev 117:6755–6833

    Article  CAS  PubMed  Google Scholar 

  25. Xu ZJ, Wan H, Miao JM, Han MJ, Yang C, Guan GF (2010) Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications. J Mol Catal A 332(1–2):152–157

    Article  CAS  Google Scholar 

  26. Sobhani S, Honarmand M (2013) Ionic liquid immobilized on γ-Fe2O3 nanoparticles: a new magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 2-amino-3, 5-dicarbonitrile-6-thio-pyridines. Appl Catal A 467:456–462

    Article  CAS  Google Scholar 

  27. Heydari Z, Bahadorikhalili S, Ranjbar PR, Mahdavi M (2018) DABCO-modified super-paramagnetic nanoparticles as an efficient and water-compatible catalyst for the synthesis of pyrano[3,2-c:5,6-c’]dichromene-6,8-dione derivatives under mild reaction conditions. Appl Organomet Chem 32:4561

    Article  CAS  Google Scholar 

  28. Bonyasi R, Gholinejad M, Saadati F, Nájera C (2018) Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New J Chem 42:3078–3086

    Article  CAS  Google Scholar 

  29. Sadjadi S, Heravi MM, Malmir M (2018) Bio-assisted synthesized Ag(0) nanoparticles immobilized on SBA-15/cyclodextrin nanosponge adduct: Efficient heterogeneous catalyst for the ultrasonic-assisted synthesis of benzopyranopyrimidines. Appl Organomet Chem 201:4286

    Article  CAS  Google Scholar 

  30. Jin T, Dong F, Liu Y, Hu YL (2019) Novel and effective strategy of dual bis(trifluoromethylsulfonyl)imide imidazolium ionic liquid immobilized on periodic mesoporous organosilica for greener cycloaddition of carbon dioxide to epoxides. New J Chem 43:2583–2590

    Article  CAS  Google Scholar 

  31. Tashrifi Z, Bahadorikhalili S, Lijan H, Ansari S, Hamedifard H, Mahdavi M (2019) Synthesis and characterization of γ-Fe2O3@SiO2-(CH2)3-PDTC-Pd magnetic nanoparticles: A new and highly active catalyst for the Heck/Sonogashira coupling reactions. New J Chem 43:8930–8938

    Article  CAS  Google Scholar 

  32. Sasaki T, Tada M, Zhong CM, Kume T, Iwasawa Y (2008) Immobilized metal ion-containing ionic liquids: Preparation, structure and catalytic performances in Kharasch addition reaction and Suzuki cross-coupling reactions. J Mol Catal A 279:200–209

    Article  CAS  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templaton D, Crocker D, Sluiter M (2008) Laboratory Analytical Procedure (LAP): determination of structural carbohydrates and lignin in biomass, Technical Report: NREL/TP-510-42618, National Renewable Energy Laboratory, Golden

  34. Khedkar MV, Shinde AR, Sasaki T, Bhanage BM (2014) Immobilized palladium metal containing ionic liquid catalyzed one step synthesis of isoindole-1, 3-diones by carbonylative cyclization reaction. J Mol Catal A 385:91–97

    Article  CAS  Google Scholar 

  35. Alinezhad H, Tajbakhsh M, Ghobadi N (2015) The synthesis of polysubstituted pyridines using nano Fe3O4 supported hydrogensulfate ionic liquid. Res Chem Intermediat 41:9113–9127

    Article  CAS  Google Scholar 

  36. Tajbakhsh M, Farhang M, Hosseinzadeh R, Sarrafi Y (2014) Nano Fe3O4 supported biimidazole Cu(I) complex as a retrievable catalyst for the synthesis of imidazo[1,2-a]pyridines in aqueous medium. RSC Adv 4:23116–23124

    Article  CAS  Google Scholar 

  37. Shirini F, Seddighi M, Mazloumi M, Makhsous M, Abedini M (2015) One-pot synthesis of 4,4 -(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) catalyzed by Brønsted acidic ionic liquid supported on nanoporous Na+-montmorillonite. J Mol Liq 208:291–297

    Article  CAS  Google Scholar 

  38. Rodulfo-Baechler SM, González-Cortés SL, Orozco J, Sagredo V, Fontal B, Mora AJ, Delgado G (2004) Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis. Mater Lett 58:2447–2450

    Article  CAS  Google Scholar 

  39. Safari J, Zarnegar Z (2013) A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. J Mol Catal A 379:269–276

    Article  CAS  Google Scholar 

  40. Li J, Shi XY, Bi YY, Wei JF, Chen ZG (2011) Pd nanoparticles in ionic liquid brush: a highly active and reusable heterogeneous catalytic assembly for solvent-free or on water hydrogenation of nitroarene under mild conditions. ACS Catal 1:657–664

    Article  CAS  Google Scholar 

  41. Serrano-Ruiz JC, Campelo JM, Francavilla M, RomeroAA LR, Menéndez-Vázquez C, García AB, García-Suárez EJ (2012) Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brønsted acidic ionic liquidsw. Catal Sci Technol 2:1828–1832

    Article  CAS  Google Scholar 

  42. Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38

    Article  CAS  Google Scholar 

  43. Rong CG, Ding XF, Zhu YC, Li Y, Wang LL, Qu YN, Ma XY, Wang ZC (2012) Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohyd Res 350:77–80

    Article  CAS  Google Scholar 

  44. Xu SQ, Pan DH, Wu YF, Song XH, Gao LJ, Li WQ, Das L, Xiao GM (2018) Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems. Fuel Process Technol 175:90–96

    Article  CAS  Google Scholar 

  45. Zhang XD, Bai YY, Cao XF, Sun RC (2017) Pretreatment of eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis. Bioresour Technol 238:1–6

    Article  CAS  PubMed  Google Scholar 

  46. Enslow KR, Bell AT (2015) SnCl4-catalyzed isomerization/dehydration of xylose and glucose to furanics in water. Catal Sci Technol 5:2839–2847

    Article  CAS  Google Scholar 

  47. Peleteiro S, Lopes AMDC, Garrote G, Parajó JC, Bogel-Łukasik R (2015) Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Ind Eng Chem Res 54:8368–8373

    Article  CAS  Google Scholar 

  48. Gupta NK, Fukuoka A, Nakajima K (2017) Amorphous Nb2O5 as a selective and reusable catalyst for furfural production from xylose in biphasic water and toluene. ACS Catal 7:2430–2436

    Article  CAS  Google Scholar 

  49. Chatterjee A, Hu XJ, Lam LY (2018) A dual acidic hydrothermally stable MOF-composite for upgrading xylose to furfural. Appl Catal A 566:130–139

    Article  CAS  Google Scholar 

  50. Lin QX, Li HL, Wang XH, Jian LF, Ren JL, Liu CF, Sun RC (2017) SO42−/Sn-MMT solid acid catalyst for xylose and xylan conversion into furfural in the biphasic system. Catalysts 7:118

    Article  CAS  Google Scholar 

  51. Tao FR, Song HL, Chou LJ (2010) Efficient process for the conversion of xylose to furfural with acidic ionic liquid. Can J Chem 89:83–87

    Article  CAS  Google Scholar 

  52. Wen WJ, Li HL, Ren JL, Sun RC, Zheng J, Sun GW, Liu SJ (2014) An efficient process for dehydration of xylose to furfural catalyzed by inorganic salts in water/dimethyl sulfoxide system. Chin J Catal 35:741–747

    Article  CAS  Google Scholar 

  53. Cai CM, Zhang T, Kumar R, Wyman CE (2013) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biot 89:2–10

    Article  CAS  Google Scholar 

  54. Dulie NW, Woldeyes B, Demsash HD (2021) Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. Int J Biol Macromol 171:10–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFB1504003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4500 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Shi, S., Gao, L. et al. Efficient conversion of xylan and rice husk to furfural over immobilized imidazolium acidic ionic liquids. Reac Kinet Mech Cat 135, 795–810 (2022). https://doi.org/10.1007/s11144-022-02172-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02172-3

Keywords

Navigation