Skip to main content
Log in

Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over nickel loaded ceria as improved catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The direct synthesis of dimethyl carbonate (DMC) without a dehydrating agent is challenging but has a significant value. Here we demonstrate the catalytic activity of inexpensive nickel loaded ceria in both batch and continuous processes for this reaction. The prepared catalysts were characterized by various physicochemical characterization techniques. The nickel-loaded ceria catalysts exhibited good catalytic activity for the synthesis of DMC in good yield (4.6 mmol) and 100% selectivity. The yield obtained is nearly six times higher than pristine CeO2, which clearly depicts the role of nickel. Reaction under high pressure continuous flow also provided a similar trend wherein a maximum yield of 15 mmol with 100% liquid phase selectivity of DMC was noted. Density functional theory calculations were carried out to investigate the adsorption energies of CO2 and methanol on pristine ceria and Ni modified ceria. The high catalytic activity of Ni-modified catalyst was attributed to the presence of strong acidic and moderate basic sites as elucidated from temperature-programmed desorption and pyridine adsorption monitored via FT-IR studies. The experiment result revealed that the CexNixyO2−δ could be a reusable and longer active catalyst for the direct synthesis of DMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marjanović V, Milovančević M, Mladenović I (2016) Prediction of GDP growth rate based on carbon dioxide (CO2) emissions. J. CO2 Util 16:212–217. https://doi.org/10.1016/j.jcou.2016.07.009

    Article  CAS  Google Scholar 

  2. Zhou Y, Wang S, Xiao M, Han D, Lu Y, Meng Y (2015) Formation of dimethyl carbonate on nature clay supported bimetallic copper–-nickel catalysts. J Clean Prod 103:925–933. https://doi.org/10.1016/j.jclepro.2014.08.075

    Article  CAS  Google Scholar 

  3. Zhang M, Xiao M, Wang S, Han D, Lu Y, Meng Y (2015) Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from carbon dioxide and methanol. J Clean Prod 103:847–853. https://doi.org/10.1016/j.jclepro.2014.09.024

    Article  CAS  Google Scholar 

  4. Zhong CL, Guo XM, Mao DS, Wang S, Wu GS, Lu GZ (2015) Effects of alkaline-earth oxides on the performance of a CuO–ZrO2 catalyst for methanol synthesis via CO2 hydrogenation. RSC Adv 5:52958–52965. https://doi.org/10.1039/c5ra06508a

    Article  CAS  Google Scholar 

  5. Bian J, Xiao M, Wang S-J, Lu Y-X, Meng Y-Z (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196. https://doi.org/10.1016/j.apsusc.2009.03.057

    Article  CAS  Google Scholar 

  6. Subramanian S, Song Y, Kim D, Yavuz CT (2020) Redox and nonredox CO2 utilization: dry reforming of methane and catalytic cyclic carbonate formation. ACS Energy Lett 5:1689–1700. https://doi.org/10.1021/acsenergylett.0c00406

    Article  CAS  Google Scholar 

  7. Cao YX, Cheng HX, Ma LL, Liu F, Liu ZM (2012) Research progress in the direct synthesis of dimethyl carbonate from CO2 and methanol. Catal Surv Asia 16:138–147. https://doi.org/10.1007/s10563-012-9140-5

    Article  CAS  Google Scholar 

  8. Zhu SH, Gao XQ, Zhu YL, Fan WB, Wang JG, Li YW (2015) A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catal Sci Technol 5:1169–1180. https://doi.org/10.1039/c4cy01148a

    Article  CAS  Google Scholar 

  9. Sankaranarayanan S, Srinivasan K (2012) Carbon dioxide—a potential raw material for the production of fuel, fuel additives and bio-derived chemicals. Indian J. Chem. Sect. A Inorg Phys Theor Anal Chem 51:1252–1262

    Google Scholar 

  10. Fang SN, Fujimoto K (1996) Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl Catal A Gen 142:L1–L3. https://doi.org/10.1016/0926-860x(96)00081-6

    Article  CAS  Google Scholar 

  11. Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499. https://doi.org/10.4209/aaqr.2013.10.0326

    Article  CAS  Google Scholar 

  12. Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95–101. https://doi.org/10.1016/j.cattod.2006.02.027

    Article  CAS  Google Scholar 

  13. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2001) CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 76:71–74. https://doi.org/10.1023/A:1016711722721

    Article  CAS  Google Scholar 

  14. Tomishige K, Kunimori K (2002) Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2–ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl Catal A Gen 237:103–109. https://doi.org/10.1016/S0926-860x(02)00322-8

    Article  CAS  Google Scholar 

  15. Santos BAV, Silva VMTM, Loureiro JM, Rodrigues AE (2014) Review for the direct synthesis of dimethyl carbonate. ChemBioEng Rev 1:214–229. https://doi.org/10.1002/cben.201400020

    Article  CAS  Google Scholar 

  16. Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89:334–353. https://doi.org/10.1002/jctb.4229

    Article  CAS  Google Scholar 

  17. Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K (2011) Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chem 13:3406–3413. https://doi.org/10.1039/c1gc15646b

    Article  CAS  Google Scholar 

  18. Honda M, Kuno S, Begum N, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2010) Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl Catal A Gen 384:165–170. https://doi.org/10.1016/j.apcata.2010.06.033

    Article  CAS  Google Scholar 

  19. Akune T, Morita Y, Shirakawa S, Katagiri K, Inumaru K (2018) ZrO2 nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: catalytic activity and elucidation of active sites. Langmuir 34:23–29. https://doi.org/10.1021/acs.langmuir.7b01294

    Article  CAS  PubMed  Google Scholar 

  20. Fu Z, Zhong Y, Yu Y, Long L, Xiao M, Han D, Wang S, Meng Y (2018) TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: catalytic performance and kinetic study. ACS Omega 3:198–207. https://doi.org/10.1021/acsomega.7b01475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prymak I, Prymak O, Wang J, Kalevaru VN, Martin A, Bentrup U, Wohlrab S (2018) Phosphate functionalization of CeO2–ZrO2 solid solutions for the catalytic formation of dimethyl carbonate from methanol and carbon dioxide. ChemCatChem 10:391–394. https://doi.org/10.1002/cctc.201701105

    Article  CAS  Google Scholar 

  22. Han D, Chen Y, Wang S, Xiao M, Lu Y, Meng Y (2018) Effect of alkali-doping on the performance of diatomite supported Cu–Ni bimetal catalysts for direct synthesis of dimethyl carbonate. Catalysts. https://doi.org/10.3390/catal8080302

    Article  Google Scholar 

  23. Kumar P, With P, Srivastava VC, Shukla K, Gläser R, Mishra IM (2016) Dimethyl carbonate synthesis from carbon dioxide using ceria–zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling. RSC Adv 6:110235–110246. https://doi.org/10.1039/c6ra22643d

    Article  CAS  Google Scholar 

  24. Hang GQ, Sun YC, Shi YB, Zheng HY, Li Z, Ju SG, Liu SJ, Shi PZ (2020) Surface properties of Ce1−xMnxO2 catalyst on the catalytic activities for direct synthesis of DMC from CO2 and methanol. Chem Res Chin Univ 41:2061–2069. https://doi.org/10.7503/cjcu20200250

    Article  CAS  Google Scholar 

  25. Deerattrakul V, Panitprasert A, Puengampholsrisook P, Kongkachuichay P (2020) Enhancing the dispersion of Cu–Ni metals on the graphene aerogel support for use as a catalyst in the direct synthesis of dimethyl carbonate from carbon dioxide and methanol. ACS Omega 5:12391–12397. https://doi.org/10.1021/acsomega.0c0114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee HJ, Joe W, Jung JC, Song IK (2012) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3–CeO2–ZrO2 catalysts prepared by a single-step sol–gel method: Effect of acidity and basicity of the catalysts. Korean J Chem Eng 29:1019–1024. https://doi.org/10.1007/s11814-012-0017-0

    Article  CAS  Google Scholar 

  27. Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K (2004) Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem. https://doi.org/10.1039/b401215a

    Article  Google Scholar 

  28. Fu ZW, Yu YH, Li Z, Han DM, Wang SJ, Xiao M, Meng YZ (2018) Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl carbonate: catalytic performance and role of oxygen vacancy. Catalysts. https://doi.org/10.3390/catal8040164

    Article  Google Scholar 

  29. Tamboli AH, Chaugule AA, Gosavi SW, Kim H (2018) Ce Zr1−xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: reaction mechanism and the effect of catalyst morphology on catalytic activity. Fuel 216:245–254. https://doi.org/10.1016/j.fuel.2017.12.008

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Chem Phys 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01. Wallingford

  34. Phokha S, Pinitsoontorn S, Chirawatkul P, Poo-Arporn Y, Maensiri S (2012) Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res Lett 7:425. https://doi.org/10.1186/1556-276X-7-425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ginting M, Taslima S, Sebayang K, Aryanto D, Sudiro T, Sebayang P (2017) Preparation and characterization of zinc oxide doped with ferrite and chromium. AIP Conf Proc 1862:030062. https://doi.org/10.1063/1.4991166

    Article  CAS  Google Scholar 

  36. Ansari A, Ali A, Asif M, Shamsuzzaman S (2018) Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J Chem 42:184–197. https://doi.org/10.1039/c7nj03742b

    Article  CAS  Google Scholar 

  37. Ansari ZA, Athar T, Fouad H, Ansari SG (2017) Sol-Gel synthesis of manganese doped titanium oxide nanoparticles for electrochemical sensing of hydroquinone. J Nanosci Nanotechnol 17:2296–2301. https://doi.org/10.1166/jnn.2017.13855

    Article  CAS  PubMed  Google Scholar 

  38. Azzouz A, Nistor D, Miron D, Ursu AV, Sajin T, Monette F, Niquette P, Hausler R (2006) Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochim Acta 449:27–34. https://doi.org/10.1016/j.tca.2006.07.019

    Article  CAS  Google Scholar 

  39. Taniguchi T, Watanabe T, Sugiyama N, Subramani AK, Wagata H, Matsushita N, Yoshimura M (2009) Identifying defects in ceria-based nanocrystals by UV resonance raman spectroscopy. J Phys Chem C 113:19789–19793. https://doi.org/10.1021/jp9049457

    Article  CAS  Google Scholar 

  40. Nakajima K, Noma R, Kitano M, Hara M (2013) Titania as an early transition metal oxide with a high density of lewis acid sites workable in water. J Phys Chem C 117:16028–16033. https://doi.org/10.1021/jp404523r

    Article  CAS  Google Scholar 

  41. Yisup N, Cao Y, Feng W-L, Dai W-L, Fan K-N (2005) Catalytic oxidation of methane over novel Ce–Ni–O mixed oxide catalysts prepared by oxalate gel-coprecipitation. Catal Lett 99:207–213. https://doi.org/10.1007/s10562-005-2121-9

    Article  CAS  Google Scholar 

  42. Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/93/1/012039

    Article  Google Scholar 

  43. Pal P, Singha RK, Saha A, Bal R, Panda AB (2015) Defect-induced efficient partial oxidation of methane over nonstoichiometric Ni/CeO2 nanocrystals. J Phys Chem C 119:13610–13618. https://doi.org/10.1021/acs.jpcc.5b01724

    Article  CAS  Google Scholar 

  44. Li P, Zhang M, Li X, Wang C, Wang R, Wang B, Yan H (2020) MOF-derived NiO/CeO2 heterojunction: a photocatalyst for degrading pollutants and hydrogen evolution. J Mater Sci 55:15930–15944. https://doi.org/10.1007/s10853-020-05123-2

    Article  CAS  Google Scholar 

  45. Zou W, Ge C, Lu M, Wu S, Wang Y, Sun J, Pu Y, Tang C, Gao F, Dong L (2015) Engineering the NiO/CeO2 interface to enhance the catalytic performance for CO oxidation. RSC Adv 5:98335–98343. https://doi.org/10.1039/c5ra20466f

    Article  CAS  Google Scholar 

  46. Xue S-F, Wu W-Y, Bian X, Wang Z-F, Wu Y-F (2018) Facile preparation of CeO2 microspheres with high surface area by ultrasonic spray pyrolysis. Green Process Synth 7:241–247. https://doi.org/10.1515/gps-2017-0041

    Article  CAS  Google Scholar 

  47. Lian J, Liu P, Jin C, Shi Z, Luo X, Liu Q (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Mikrochim Acta 186:332. https://doi.org/10.1007/s00604-019-3439-0

    Article  CAS  PubMed  Google Scholar 

  48. Bear J, McNaughter P, Southern P, O’Brien P, Dunnill C (2015) Nickel-doped ceria nanoparticles: the effect of annealing on room temperature ferromagnetism. Curr Comput-Aided Drug Des 5:312–326. https://doi.org/10.3390/cryst5030312

    Article  CAS  Google Scholar 

  49. Cui J, Luo J, Peng B, Zhang X, Zhang Y, Wang Y, Qin Y, Zheng H, Shu X, Wu Y (2016) Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing. Nanoscale 8:770–774. https://doi.org/10.1039/c5nr05924k

    Article  CAS  PubMed  Google Scholar 

  50. Fifere N, Airinei A, Dobromir M, Sacarescu L, Dunca SI (2021) Revealing the effect of synthesis conditions on the structural, optical, and antibacterial properties of cerium oxide nanoparticles. Nanomaterials. https://doi.org/10.3390/nano11102596

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang F, Wang P, Koberstein J, Khalid S, Chan S-W (2004) Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf Sci 563:74–82. https://doi.org/10.1016/j.susc.2004.05.138

    Article  CAS  Google Scholar 

  52. Reddy BM, Kumar TV, Durgasri N (2013) New developments in ceria-based mixed oxide synthesis and reactivity in combustion and oxidation reactions. In: Trovarelli A, Fornasiero P (eds) Catalysis by ceria and related materials. Imperial College Press, London, pp 397–464

    Chapter  Google Scholar 

  53. Tamura M, Honda M, Nakagawa Y, Tomishige K (2014) Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Catal Commun 89:19–33. https://doi.org/10.1002/jctb.4209

    Article  CAS  Google Scholar 

  54. Almusaiteer K (2009) Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts. Catal Commun 10:1127–1131. https://doi.org/10.1016/j.catcom.2009.01.012

    Article  CAS  Google Scholar 

  55. Razzaq R, Zhu HW, Jiang L, Muhammad U, Li CS, Zhang SJ (2013) Catalytic methanation of CO and CO2 in coke oven gas over Ni–Co/ZrO2–CeO2. Ind Eng Chem Res 52:2247–2256. https://doi.org/10.1021/ie301399z

    Article  CAS  Google Scholar 

  56. Albers P, Pietsch J, Parker SF (2001) Poisoning and deactivation of palladium catalysts. J Mol Catal A Chem 173:275–286. https://doi.org/10.1016/s1381-1169(01)00154-6

    Article  CAS  Google Scholar 

  57. Honda M, Suzuki A, Noorjahan B, Fujimoto K, Suzuki K, Tomishige K (2009) Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem Commun 30:4596–4598. https://doi.org/10.1039/b909610h

    Article  CAS  Google Scholar 

  58. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-oxidation catalysts. Chem Mater 12:3715–3725. https://doi.org/10.1021/cm001113k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI communication No. CSIR-CSMCRI-089/2018. M.M. thanks CSIR, New Delhi, for a Senior Research Fellowship. The authors thank CSIR, New Delhi for financial support under the projects CSC-0102, OLP-0031, CSC-0123, and MLP-0028. The authors thanks to Analytical Division & Centralized Instrumentation facilities of this institute for analytical support. Dr. Lakhya Jyoti Konwar and Dr. Saravanan S are acknowledged for their encouragement and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Srinivasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariyaselvakumar, M., Selvaraj, T., Balasubramanian, V. et al. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over nickel loaded ceria as improved catalysts. Reac Kinet Mech Cat 135, 937–950 (2022). https://doi.org/10.1007/s11144-022-02162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02162-5

Keywords

Navigation