Skip to main content
Log in

Kinetics and mechanism of I(+ 3) reactions and consequences for other iodine reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This article presents new kinetic studies of the disproportionation of I(+ 3) and of its oxidation by H2O2. It also provides an update of the previously proposed model for reactions of iodine compounds with oxidation numbers from − 1 to + 5 with each other and with H2O2. This model explains the kinetics of several reactions, including the oxidation of iodine by H2O2. We show that the reduction of HOI by H2O2 results from \({\text{HOI }} + {\text{ H}}_{{2}} {\text{O}}_{{2}} \to {\text{HOOI }} + {\text{ H}}_{{2}} {\text{O}}\) followed by the reversible reaction \({\text{HOOI}} \rightleftharpoons {\text{I}}^{ - } + {\text{ H}}^{ + } + {\text{ O}}_{{2}}\). An analysis of previous measurements of the kinetic constant k(HOI + H2O2) explains the large differences between the values proposed in the literature and gives k(HOI + H2O2) = 6 M−1 s−1. The reversibility of the reaction \({\text{HOOI}} \rightleftharpoons {\text{I}}^{ - } + {\text{ H}}^{ + } + {\text{ O}}_{{2}}\) suggests a new explanation for the effect of oxygen on the Bray–Liebhafsky reaction. H2O2 would oxidize HOOI by a radical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

I(+3) autocatalytic disproportionation

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Comprehensive Chemical Kinetics 2004, Volume 40, Chapter 14, Instability, periodic reactions, and chaos.

  2. Schuster HG, Just W (2005) Deterministic chaos—an introduction, 4th edn. Wiley, Weinheim

    Book  Google Scholar 

  3. Čupić ŽD, Taylor AF, Horváth D, Orlik M, Epstein IR (2020) Advances in oscillating reactions. Front Chem 9:292

    Google Scholar 

  4. Ivanović-Šasić AZ, Marković VM, Anić SR, Lj Z, Kolar-Anić and Ž. D. Čupić, (2011) Structures of chaos in open reaction systems. Phys Chem Chem Phys 13:20162–20171

    Article  PubMed  CAS  Google Scholar 

  5. Bosland L, Cantrel L, Girault N, Clement B (2010) Modeling of iodine Radiochemistry in the ASTEC severe accident code: description and application to FPT-2 Phebus test. Nuclear Technol 171:88–107

    Article  CAS  Google Scholar 

  6. Fortina C, Fèvre-Nolleta V, Cousin F, Lebègue P, Louisa F (2019) Box modelling of gas-phase atmospheric iodine chemical reactivity in case of a nuclear accident. Atmos Environ 214:116838

    Article  CAS  Google Scholar 

  7. Saha S, Roy S, Mathi P, Mondal JA (2020) Adsorption of iodine species (I3, I, and IO3) at the nuclear paint monolayer−water interface and its relevance to a nuclear accident scenario. J Phys Chem A 124:6726–6734

    Article  CAS  PubMed  Google Scholar 

  8. Mahajan AS, Shaw M, Oetjen H, Hornsby KE, Carpenter LJ, Kaleschke L, Tian-Kunze X, Lee JD, Moller SJ, Edwards P, Commane R, Ingham T, Heard DE, Plane JMC (2010) Evidence of reactive iodine chemistry in the Arctic boundary layer. J Geophys Res 115:D20303

    Article  CAS  Google Scholar 

  9. Badia A, Reeves CE, Baker AR, Saiz-Lopez A, Volkamer R, Koenig TK, Apel EC, Hornbrook RS, Carpenter LJ, Andrews SJ, Sherwen T, von Glasow R (2019) Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem. Atmos Chem Phys 19:3161–3189

    Article  CAS  Google Scholar 

  10. Inamdar S, Tinel L, Chance R, Carpenter LJ, Sabu P, Chacko R, Tripathy SC, Kerkar AU, Sinha AK, Venkateswaran Bhaskar P, Sarkar A, Roy R, Sherwen T, Cuevas C, Saiz-Lopez A, Ram K, Mahajan AS (2020) Estimation of reactive inorganic iodine fluxes in the Indian and Southern Ocean marine boundary layer. Atmos Chem Phys 20:12093–12114

    Article  CAS  Google Scholar 

  11. Schmitz G, Furrow SD (2018) Kinetics of reactions of iodine inorganic compounds in acidic solutions. In: Physical Chemistry 2018, Proceedings of the 14th Int. Conf. Fundam. Appl. Aspects Phys. Chem. Belgrade, Sept 24–28, Society of Physical Chemists of Serbia pp 271–278

  12. Schmitz G (2010) Iodine oxidation by hydrogen peroxide in acidic solutions, Bray–Liebhafsky reaction and other related reactions. Phys Chem Chem Phys 12:6605–6615

    Article  CAS  PubMed  Google Scholar 

  13. Sharma KR, Noyes RM (1976) Oscillations in chemical systems. 13. A detailed molecular mechanism for the Bray–Liebhafsky reaction of iodate and hydrogen peroxide. J Am Chem Soc 98(15):4345–4361

    Article  CAS  Google Scholar 

  14. Schmitz G (1999) Effects of oxygen on the Bray–Liebhafsky reaction. Phys Chem Chem Phys 1:4605

    Article  CAS  Google Scholar 

  15. Ševčik P, Kissimonová K, Adamčikova L (2000) Oxygen production in the oscillatory Bray–Liebhafsky reaction. J Phys Chem A 104:3958–3963

    Article  CAS  Google Scholar 

  16. Ševčik P, Adamčikova L (1998) Effect of a gas bubbling and stirring on the oscillating Bray–Liebhafsky reaction. J Phys Chem A 102:1288–1291

    Article  Google Scholar 

  17. Ball JM, Hnatiw JB (2001) The reduction of l2 by H2O2 in aqueous solution. Can J Chem 79:304–311

    Article  CAS  Google Scholar 

  18. Schmitz G (2008) Buffers catalysis of the iodine(+1) reduction by hydrogen peroxide In Physical Chemistry 2008, Proceedings of the 9th Int. Conf. Fundam. Appl. Aspects Phys. Chem. Society of Physical Chemists of Serbia, Belgrade pp. 219–224

  19. Schmitz G (2009) Iodine(+1) reduction by hydrogen peroxide, Russian. J Phys Chem 83(9):1447

    CAS  Google Scholar 

  20. Schmitz G, Furrow SD (2012) Kinetics of the iodate reduction by hydrogen peroxide and relation with the Briggs–Rauscher and Bray–Liebhafsky oscillating reactions. Phys Chem Chem Phys 14:5711–5717

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz G, Furrow SD (2014) Iodine Inorganic Reactions in Acidic Solutions and Oscillating Reactions, Physical Chemistry 2014, Proceedings of the 12th Int. Conf. Fundam. Appl. Aspects Phys. Chem. Society of Physical Chemists of Serbia, Belgrade pp 320–326

  22. Schmitz G, Furrow SD (2016) Bray–Liebhafsky and non-catalyzed Briggs–Rauscher oscillating reactions. Russ J Phys Chem A 90(2):271–275

    Article  CAS  Google Scholar 

  23. Szabo E, Ševčík P (2013) Reexamination of gas production in the Bray−Liebhafsky reaction: what happened to O2 pulses? J Phys Chem A 117:10604–10614

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz G, Lente G (2020) Fundamental concepts in chemical kinetics. ChemTexts 6(1):1

    Article  CAS  Google Scholar 

  25. Schmitz G (2004) Inorganic reactions of iodine(+1) in acidic solutions. Int J Chem Kinet 36:480

    Article  CAS  Google Scholar 

  26. Schmitz G, Furrow SD (2013) Kinetics of iodous acid disproportionation. Int J Chem Kinet 48(8):525–530

    Article  CAS  Google Scholar 

  27. Schmitz G, Nullclines (2021) A Simple Explanation of Complicated Phenomena, In Physical Chemistry 2021, Proceedings of the 15th Int. Conf. Fundam. Appl. Aspects Phys. Chem., pp. 222–229, Belgrade, Sept 20–24, Society of Physical Chemists of Serbia, 2021. ISBN 978-86-82475-40-8.

  28. Schmitz G, Noszticzius Z, Hollo G, Wittmann M, Furrow SD (2018) Reactions of iodate with iodine in concentrated sulfuric acid. Formation of I(+3) and I(+1) compounds. Chem Phys Lett 691:44

    Article  CAS  Google Scholar 

  29. Furrow SD, Cervellati R, Amadori G (2002) New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A 106:5841–5850

    Article  CAS  Google Scholar 

  30. Schmitz G (2008) Inorganic reactions of iodine(III) in acidic solutions and free energy of iodous acid formation. Int J Chem Kinet 40:647–652

    Article  CAS  Google Scholar 

  31. Schmitz G (2011) Iodine oxidation by hydrogen peroxide and Bray–Liebhafsky oscillating reaction: effect of the temperature. Phys Chem Chem Phys 13:7102–7111

    Article  CAS  PubMed  Google Scholar 

  32. Olexová A, Mrákavová M, Melicherčík M, Treindl L (2006) The autocatalytic oxidation of iodine with hydrogen peroxide in relation to the Bray–Liebhafsky oscillatory reaction. Collect Czech Chem Commun 71:91–106

    Article  CAS  Google Scholar 

  33. Olexová A, Mrákavová M, Melicherčík M, Treindl L (2010) Oscillatory system I, H2O2, HClO4: the modified form of the Bray–Liebhafsky reaction. J Phys Chem A 114:7026–7029

    Article  PubMed  CAS  Google Scholar 

  34. Stanisavljev DR, Stevanović KZ, Bubanja IM (2018) Outsized stochasticity of iodine oxidation with hydrogen peroxide and its implications on the reaction mechanism. Chem Phys Lett 706:120–126

    Article  CAS  Google Scholar 

  35. Stevanović KZ, Bubanja IM, Stanisavljev DR (2019) Is iodine oxidation with hydrogen peroxide coupled with nucleation processes? J Phys Chem C 123:16671–16680

    Article  CAS  Google Scholar 

  36. Jortner J, Ottolenghi M, Stein G (1962) The effect of oxygen on the photochemistry of the iodide ion in aqueous solutions. J Phys Chem 66:2042–2045

    Article  CAS  Google Scholar 

  37. Nardello V, Briviba K, Sies H, Aubry J-M (1998) Identification of the precursor of singlet oxygen (1O2, 1g) involved in the disproportionation of hydrogen peroxide catalyzed by calcium hydroxide. Chem Commun 5:599–600

    Article  Google Scholar 

  38. Furrow SD (1987) Reactions of iodine intermediates in iodate-hydrogen peroxide oscillators. J Phys Chem 91:2129–2135

    Article  CAS  Google Scholar 

  39. Liebhafsky HA (1932) The catalytic decomposition of hydrogen peroxide by the iodine-iodide couple. III. The rate of oxidation, in acid solution, of hydrogen peroxide by iodine. J Am Chem Soc 54:3499–3508

    Article  CAS  Google Scholar 

  40. Shin J, Lee Y, von Gunten U (2020) Kinetics of the reaction between hydrogen peroxide and aqueous iodine: implications for technical and natural aquatic systems. Water Res 179:115852

    Article  CAS  PubMed  Google Scholar 

  41. Schmitz G (1909) Kinetics and mechanism of the iodate-iodide reaction and other related reactions. Phys Chem Chem Phys 1999:1

    Google Scholar 

  42. Furuichi R, Liebhafsky HA (1975) Bull Chem Soc Jpn 48:745

    Article  CAS  Google Scholar 

  43. Schmitz G (2000) Kinetics of the Dushman reaction at low I- concentrations. Phys Chem Chem Phys 2:4041

    Article  CAS  Google Scholar 

  44. Liebhafsky HA, Mohammad A (1933) The kinetics of the reduction in acidic solution of hydrogen peroxide by iodide ion. J Am Chem Soc 55:3977–3986

    Article  CAS  Google Scholar 

  45. Lozar J, Lafage B (1994) Kinetics of the oxidation of iodide ions by oxygenated water using spectrophotometry with a microcomputer. Bulletin de l’Union des Physiciens 88(764):895–902

    CAS  Google Scholar 

  46. Stanisavljev DR, Milenković MC, Mojović MD, Popović-Bijelić AD (2011) Oxygen centered radicals in iodine chemical oscillators. J Phys Chem A 115:7955–7958

    Article  CAS  PubMed  Google Scholar 

  47. Stanisavljev DR, Milenković MC, Popović-Bijelić AD, Mojović MD (2013) Radicals in the Bray−Liebhafsky oscillatory reaction. J Phys Chem A 117:3292–3295

    Article  CAS  PubMed  Google Scholar 

  48. Kéki S, Székely G, Beck MT (2003) The effect of light on the Bray–Liebhafsky reaction. J Phys Chem A 107:73–75

    Article  CAS  Google Scholar 

  49. Stanbury DM (2018) Comment on the principle of detailed balancing in complex mechanisms and its application to iodate reactions. J Phys Chem A 122:3956–3957

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy E. Schmitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, G.E., Furrow, S.D. Kinetics and mechanism of I(+ 3) reactions and consequences for other iodine reactions. Reac Kinet Mech Cat 135, 1171–1186 (2022). https://doi.org/10.1007/s11144-022-02155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02155-4

Keywords

Navigation