Skip to main content
Log in

Free-Radical and Non-Free-Radical Based Reaction Pathways of Iodide Oxidation by Hydrogen Peroxide in Acid Solution–Ab Initio Calculations

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The oxidation of iodine ions (I) by hydrogen peroxide (H2O2) under acidic conditions was simulated using ab initio calculations. I2 was formed in three radical-free reactions, where the initial HOI-generating step was identified as the rate limiting step with an energy barrier of 24.49 kcal/mol. The subsequent O2-yielding decomposition of H2O2 with HOI was thermodynamically spontaneous, but kinetically slow due to a substantial energy barrier of 41.34 kcal/mol. In addition to small molecules, five common free radicals were also identified: HO, H4O2I, HOO, I, and \({\text{I}}_{2}^{ - \bullet} \). HO and H4O2I were produced by homolytic decomposition of the transient H5O3I with an energy barrier of 3.20 kcal/mol firstly. HO and HOO were also observed to participate in several reactions which yielded O2. Overall, radical-mediated reaction had significantly lower energy barrier for O2 generation than the non-free radical reaction pathways. In addition to the generation of O2, other species such as H2O2, I2, \({\text{I}}_{3}^{ - }\), and HOOI were also formed through the reactions between free radicals and small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L.-J. Fan, X.-H. Su, H.-M. Shen, et al., Global Health J. 1, 23 (2017).

    Article  Google Scholar 

  2. M. Halka, S. Smoleń, M. Czernicka, et al., Plant Physiol. Biochem. 144, 35 (2019).

    Article  CAS  Google Scholar 

  3. T. Matsumura, H. Takagi, O. Tanaike, et al., Microporous Mesoporous Mater. 282, 237 (2019).

    Article  CAS  Google Scholar 

  4. H.-Y. Wang, S. Holdren, and M. R Zachariah, Combust. Flame 197, 120 (2018).

    Article  CAS  Google Scholar 

  5. A. Au-Duong and C.-K. Lee, Mater. Sci. Eng. C 76, 477 (2017).

    Article  CAS  Google Scholar 

  6. Q. Zhao, Y.-Y. Lu, Z.-Q. Zhu, Z.-L. Tao, et al., Nano Lett. 15, 5982 (2015).

    Article  CAS  Google Scholar 

  7. T. Duhamel, C. J. Stein, C. Martínez, et al., ACS Catal. 8, 3918 (2018).

    Article  CAS  Google Scholar 

  8. M. M. Hamed, M. Holiel, and Y. F. El-Aryan, J. Mol. Liq. 242, 722 (2017).

    Article  CAS  Google Scholar 

  9. H. Inoue, M. Kagoshima, M. Yamasaki, et al., Appl. Radiation Isotopes 61, 1189 (2004).

    Article  CAS  Google Scholar 

  10. H. I. Kim, J. J. Wijenayake, D. Mohapatra, et al., Hydrometallurgy 181, 91 (2018).

    Article  CAS  Google Scholar 

  11. G. Schmitz, Phys. Chem. Chem. Phys. 12, 6605 (2010).

    Article  CAS  Google Scholar 

  12. C. L. Copper and E. Koubek, Inorg. Chim. Acta 288, 229 (1999).

    Article  CAS  Google Scholar 

  13. C. Karunakaran and B. Muthukumaran, Trans. Met. Chem. 20, 460 (1995).

    Article  CAS  Google Scholar 

  14. M. Melichercík, A. Olexov, and L. Treindl, J. Mol. Catal. A 127, 143 (1997).

    Article  Google Scholar 

  15. H. A. Liebhafsky, J. Am. Chem. Soc. 54, 1792 (1932).

    Article  CAS  Google Scholar 

  16. A. Mohammad and H. A. Liebhafsky, J. Am. Chem. Soc. 56, 1680 (1934).

    Article  CAS  Google Scholar 

  17. S. Furrow, J. Phys. Chem. 91, 2129 (1987).

    Article  CAS  Google Scholar 

  18. H. Degn, Acta Chem. Scand. 21, 1057 (1967).

    Article  CAS  Google Scholar 

  19. D. R. Stanisavljev, M. C. Milenković, M. D. Mojović, et al., J. Phys. Chem. A 115, 2247 (2011).

    Article  CAS  Google Scholar 

  20. M. C. Milenković and D. R. Stanisavljev, J. Phys. Chem. A 116, 5541 (2012).

    Article  Google Scholar 

  21. B. J. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  22. B. J. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  23. S. Canneaux, B. Xerri, F. Louis, and L. Cantrel, J. Phys. Chem. A 114, 9270 (2010).

    Article  CAS  Google Scholar 

  24. C. Hammaecher, S. Canneaux, F. Louis, et al., J. Phys. Chem. A 115, 6664 (2011).

    Article  CAS  Google Scholar 

  25. K. Mečiarová, M. Šulka, S. Canneaux, et al., Chem. Phys. Lett. 517, 149 (2011).

    Article  Google Scholar 

  26. T. Cours, C. Sébastien, C. Hammaecher, et al., Comput. Theor. Chem. 1012, 72 (2013).

    Article  CAS  Google Scholar 

  27. H. A. Schwarz and B. H. J. Bielski, J. Phys. Chem. 90, 1445 (1986).

    Article  CAS  Google Scholar 

  28. G. L. C. de Souza and A. Brown, J. Chem. Phys. 141, 234303 (2014).

    Article  Google Scholar 

  29. S. Khanniche, F. Louis, L. Cantrel, et al., ACS Earth Space Chem. 1, 39 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from NSFC (21862005), the financial support from the foundation of Gui Zhou Provience Science and Technology Department (LH[2017]7336, [2019]1457, [2019]2835, [2018]5769); the financial support from the foundation of  Gui Zhou Provience Education Department (KY[2018]126) and the financial support from the foundation of the state key laboratory of efficient utilization for low grade phosphate rock and its associated resources (WFKF2017-03). We thank EditSprings (www.editsprings.com) for its linguistic assistance during the preparation of this manuscript. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xie, T., Yang, S. et al. Free-Radical and Non-Free-Radical Based Reaction Pathways of Iodide Oxidation by Hydrogen Peroxide in Acid Solution–Ab Initio Calculations. Russ. J. Phys. Chem. 95 (Suppl 1), S15–S22 (2021). https://doi.org/10.1134/S0036024421140089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421140089

Keywords:

Navigation