Skip to main content
Log in

Photocatalytic degradation of Rhodamine B over TiO2/g-C3N4 and immobilized TiO2/g-C3N4 on stainless steel wire gauze under UV and visible light: A detailed kinetic analysis and mechanism of degradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A one-step hydrothermal method was used to synthesize an efficient visible light-driven TiO2 anchored on g-C3N4 composite. X-Ray diffraction (XRD), High Resolution scanning electron microscope, UV–Vis diffuse reflectance (UV-DRS), and other techniques were used to characterize the prepared photocatalyst. The anatase phase of TiO2 was loaded on g-C3N4, according to XRD data. UV-DRS data revealed that the bandgap of nanocomposites was reduced with the addition of g-C3N4. The effect of varying TiO2 and g-C3N4 content on Rhodamine B(RhB) degradation was investigated. Under UV and visible light irradiation, photocatalytic degradation of prepared catalyst was investigated for Rhodamine B degradation. To find the optimal condition, the factors influencing the photo degradation process, such as catalyst dosage, initial concentration, and light intensity, were investigated, and a possible photocatalytic degradation mechanism was also proposed. Non-linear least squares fitting revealed the photocatalytic degradation of RhB follows pseudo-first-order kinetics. The TiO2/g-C3N4 (TG) composite is coated on stainless steel wire gauze by wash coating technique and its effect on RhB degradation was also studied and compared with TiO2/g-C3N4 nanoparticles. The increased photocatalytic activity of wire gauze coated TiO2/g-C3N4 makes them very promising for use in continuous photocatalytic degradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang X, Xu H, Luo X et al (2021) Enhanced photocatalytic properties of CeO2/TiO2 heterostructures for phenol degradation. Colloid Interface Sci Commun 44:100476. https://doi.org/10.1016/j.colcom.2021.100476

    Article  CAS  Google Scholar 

  2. Ding J, Wang M, Zhang X et al (2014) Photoluminescence investigation about zinc oxide with graphene oxide & reduced graphene oxide buffer layers. J Colloid Interface Sci 416:289–293. https://doi.org/10.1016/j.jcis.2013.10.059

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Wang Y, Zhu X et al (2021) 1T and 2H mixed phase MOS2 nanobelts coupled with Ti3 + self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Appl Surf Sci 556:149768. https://doi.org/10.1016/j.apsusc.2021.149768

    Article  CAS  Google Scholar 

  4. Chang F, Zhang J, Xie Y et al (2014) characterization, and photocatalytic performance of exfoliated g-C3 N4–TiO2 hybrids. Appl Surf Sci Fabr 311:574–581

    Article  CAS  Google Scholar 

  5. Wang C, Zhu W, Xu Y et al (2014) Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceram Int 40:11627–11635. https://doi.org/10.1016/j.ceramint.2014.03.156

    Article  CAS  Google Scholar 

  6. Li J, Liu Y, Li H, Chen C (2016) Fabrication of g-C3 N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J Photochem Photobiol A 317:151–160

    Article  CAS  Google Scholar 

  7. Yan X, Gao Q, Qin J et al (2018) A facile method for fabricating TiO2/g-C3 N4 hollow nanotube heterojunction and its visible light photocatalytic performance. Mater Lett 217:1–4. https://doi.org/10.1016/j.matlet.2017.12.142

    Article  CAS  Google Scholar 

  8. Gu L, Wang J, Zou Z, Han X (2014) Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV- and visible-light photocatalytic activity. J Hazard Mater 268:216–223. https://doi.org/10.1016/j.jhazmat.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  9. Raza A, Shen H, Haidry AA, Cui S (2019) Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: advanced photocatalytic application. Appl Surf Sci 488:887–895. https://doi.org/10.1016/j.apsusc.2019.05.210

    Article  CAS  Google Scholar 

  10. Hao R, Wang G, Jiang C et al (2017) In situ hydrothermal synthesis of g-C3N4 /TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci 411:400–410. https://doi.org/10.1016/j.apsusc.2017.03.197

    Article  CAS  Google Scholar 

  11. Senthil RA, Theerthagiri J, Selvi A, Madhavan J (2017) Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation. Opt Mater 64:533–539. https://doi.org/10.1016/j.optmat.2017.01.025

    Article  CAS  Google Scholar 

  12. Fagan R (2016) Photocatalytic properties of g-C3N4–TiO2 heterojunctions under UV and visible light conditions. Materials 9(4):286. https://doi.org/10.3390/ma9040286

    Article  CAS  PubMed Central  Google Scholar 

  13. Godoy ML, Milt VG, Miró EE, Banús ED (2021) Scaling-up of the catalytic stacked wire mesh filters for the abatement of diesel soot. Catal Today. https://doi.org/10.1016/j.cattod.2021.07.010

    Article  Google Scholar 

  14. Moradi S, Akbar A, Hayati F et al (2021) Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem Eng J 414:128618. https://doi.org/10.1016/j.cej.2021.128618

    Article  CAS  Google Scholar 

  15. Hu K, Li R, Ye C et al (2020) Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet ef fi cient for photocatalytic degradation of cipro fl oxacin. J Clean Prod 253:120055. https://doi.org/10.1016/j.jclepro.2020.120055

    Article  CAS  Google Scholar 

  16. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  17. Jo W, Natarajan TS (2015) Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3 N4/TiO2 photocatalysts for isoniazid degradation. Chem Eng J 281:549–565. https://doi.org/10.1016/j.cej.2015.06.120

    Article  CAS  Google Scholar 

  18. Chen X, Li X, Yang J et al (2018) Multiphase TiO2 surface coating g-C3N4 formed a sea urchin like structure with interface effects and improved visible-light photocatalytic performance for the degradation of ibuprofen. Int J Hydrog Energy 43:13284–13293. https://doi.org/10.1016/j.ijhydene.2018.05.111

    Article  CAS  Google Scholar 

  19. Fu M, Liao J, Dong F, et al (2014) Growth of g-C3N4 layer on commercial TiO2 for enhanced visible light photocatalytic activity

  20. Li YN, Chen ZY, Wang MQ et al (2018) Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants. Appl Surf Sci 440:229–236. https://doi.org/10.1016/j.apsusc.2018.01.106

    Article  CAS  Google Scholar 

  21. Akinbami O, Moepya R, Ngubeni GN et al (2021) Lead-free Rudorffite-type CS3Bi2Br9 nanoparticles for photocatalytic degradation of rhodamine B and methylene blue. J Photochem Photobiol Chem 419:113460. https://doi.org/10.1016/j.jphotochem.2021.113460

    Article  CAS  Google Scholar 

  22. Sun Z, Li C, Yao G, Zheng S (2016) In situ generated g-C3N4/TiO2 hybrid over diatomite supports for enhanced photodegradation of dye pollutants. Mater Des 94:403–409. https://doi.org/10.1016/j.matdes.2016.01.056

    Article  CAS  Google Scholar 

  23. Hu F, Sun S, Xu H et al (2021) Investigation on g-C3N4/rGO/TiO2 nanocomposite with enhanced photocatalytic degradation performance. J Phys Chem Solids 156:110181. https://doi.org/10.1016/j.jpcs.2021.110181

    Article  CAS  Google Scholar 

  24. Wang Y, Long Y, Zhang D (2017) Facile in situ growth of high strong BiOI network films on metal wire meshes with photocatalytic activity. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b02810

    Article  Google Scholar 

  25. Morales GV, Sham EL, Cornejo R, Torres EMF (2012) Kinetic studies of the photocatalytic degradation of tartrazine. Latin Am Appl Res 42:45–49

    Google Scholar 

  26. Premalatha N, Miranda LR (2022) A magnetic separable 3D hierarchical BiOI/rGO/Fe3O4 catalyst for degradation of Rhodamine B under visible light: kinetic studies and mechanism of degradation. Mater Sci Eng B 276:115576. https://doi.org/10.1016/j.mseb.2021.115576

    Article  CAS  Google Scholar 

  27. Zhou F, Yan C, Liang T et al (2018) Photocatalytic degradation of Orange G using sepiolite-Ti 2 nanocomposites: optimization of physicochemical parameters and kinetics studies. Chem Eng Sci 183:231–239. https://doi.org/10.1016/j.ces.2018.03.016

    Article  CAS  Google Scholar 

  28. Asenjo NG, Santamaría R, Blanco C et al (2013) Correct use of the Langmuir-Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55:62–69. https://doi.org/10.1016/j.carbon.2012.12.010

    Article  CAS  Google Scholar 

  29. Dong S, Lian X, Chen S et al (2021) Kinetic analysis and mechanism study on the photocatalytic degradation of 2,4-dinitrophenylhydrazine over surface plasmonic Ag/Cu/TiO2 composite. React Kinet Mech Cat 134:485–499. https://doi.org/10.1007/s11144-021-02054-0

    Article  CAS  Google Scholar 

  30. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  31. Lente G. Deterministic kinetics in chemistry and systems biology-the dynamics of complex reaction networks. The dynamics of complex reaction networks. X, p 135. https://doi.org/10.1007/978-3-319-15482-4

  32. Mahana A, Mehta SK (2021) Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. Environ Sci Pollut Res 28:28234–28250. https://doi.org/10.1007/s11356-021-12682-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NP: Investigation, Methodology of project, writing original draft. LRM: Resources, Review and editing.

Corresponding author

Correspondence to Lima Rose Miranda.

Ethics declarations

Conflict of interest

We declare that this is our original work which has not been published anywhere. Authors are thankful to Sophisticated Analytical Instrument Facility (SAIF), IIT-Madras for supporting us in research and characterization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premalatha, N., Rajalakshmi, P. & Miranda, L.R. Photocatalytic degradation of Rhodamine B over TiO2/g-C3N4 and immobilized TiO2/g-C3N4 on stainless steel wire gauze under UV and visible light: A detailed kinetic analysis and mechanism of degradation. Reac Kinet Mech Cat 135, 1031–1046 (2022). https://doi.org/10.1007/s11144-022-02154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02154-5

Keywords

Navigation