Skip to main content
Log in

Mixed oxides of cerium and manganese as catalysts for total oxidation of ethyl acetate: effect of preparation procedure

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The microstructure of manganese and cerium oxide bi-component materials with different Ce/Mn ratio, obtained by co-precipitation and template assisted hydrothermal techniques, is studied in details by nitrogen physisorption, XRD, SEM, TEM, XPS and Raman spectroscopies and TPR with hydrogen. The catalytic behaviour of the composites in total oxidation of ethyl acetate is investigated. It is found that the close contact between manganese and cerium metal oxide nanoparticles is realized by interface layer of isomorphously substitituted or incorporated in interstitial positions in ceria lattice manganese ions in different oxidative state. The physicochemical data evidence that this interface layer stabilizes a “shell” of finely dispersed CeO2 species on the “core” of MnOx entities, which plays a decisive role in the catalytic process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Konsolakis M, Carabineiro SAC, Marnellos GE, Asad MF, Soares OSGP, Pereira MFR, Órfão JJM, Figueiredo JL (2017) Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. J Colloid Interface Sci 496:141–149. https://doi.org/10.1016/j.jcis.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  2. Cakmak S, Dales RE, Liu L, Kauri LM, Lemieux CL, Hebbern C, Zhu J (2014) Residential exposure to volatile organic compounds and lung function: results from a population-based cross-sectional survey. Environ Pollut 194:145–151. https://doi.org/10.1016/j.envpol.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  3. Garcia T, Solsona B, Taylor SH (2004) The oxidative destruction of hydrocarbon volatile organic compounds using palladium–vanadia–titania catalysts. Catal Lett 97:99–103. https://doi.org/10.1023/B:CATL.0000034294.35776.db

    Article  CAS  Google Scholar 

  4. Hui L, Liu X, Tan Q, Feng M, An J, Qu Y, Zhang Y, Jiang M (2018) Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan. Central China. Atmos Environ 192:55–71. https://doi.org/10.1016/j.atmosenv.2018.08.042

    Article  CAS  Google Scholar 

  5. Seiyama T (1992) Total oxidation of hydrocarbons on perovskite oxides. Catal Rev 34:281–300. https://doi.org/10.1080/01614949208016313

    Article  CAS  Google Scholar 

  6. Álvarez-Galván MC, Pawelec B, de la O’Shea VAP, Fierro JLG, Arias PL (2004) Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Appl Catal B 51:83–91. https://doi.org/10.1016/j.apcatb.2004.01.024

    Article  CAS  Google Scholar 

  7. Zhang D, Du X, Shi L, Gao R (2012) Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans 41:14455–14475. https://doi.org/10.1039/C2DT31759A

    Article  CAS  Google Scholar 

  8. Bastos SST, Órfão JJM, Freitas MMA, Pereira MFR, Figueiredo JL (2009) Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol. Appl Catal B 93:30–37. https://doi.org/10.1016/j.apcatb.2009.09.009

    Article  CAS  Google Scholar 

  9. Sun C, Li H, Chen L (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5:8475–8505. https://doi.org/10.1039/C2EE22310D

    Article  CAS  Google Scholar 

  10. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  11. Shen BX, Zhang XP, Ma HQ, Yao Y, Liu T (2013) A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O. J Environ Sci 25:791–800. https://doi.org/10.1016/s1001-0742(12)60109-0

    Article  CAS  Google Scholar 

  12. Yao X, Ma K, Zou W, He S, An J, Yang F, Dong L (2017) Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chin J Catal 38:146–159. https://doi.org/10.1016/S1872-2067(16)62572-X

    Article  CAS  Google Scholar 

  13. Picasso G, Gutiérrez M, Pina MP, Herguido J (2007) Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: application to catalytic membrane reactors. Chem Eng J 126(2–3):119–130. https://doi.org/10.1016/j.cej.2006.09.005

    Article  CAS  Google Scholar 

  14. Tang X, Chen J, Huang X, Xu Y, Shen W (2008) Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl Catal B 81(1–2):115–121. https://doi.org/10.1016/j.apcatb.2007.12.007

    Article  CAS  Google Scholar 

  15. Wang XY, Kang Q, Li D (2008) Low-temperature catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Catal Commun Catal Commun 9(13):2158–2162. https://doi.org/10.1016/j.catcom.2008.04.021

    Article  CAS  Google Scholar 

  16. Delimaris D, Ioannides T (2008) VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl Catal B 84:303–312. https://doi.org/10.1016/j.apcatb.2008.04.006

    Article  CAS  Google Scholar 

  17. Vences-Alvarez E, Flores-Arciniega JL, Flores-Zuñiga H, Rangel-Mendez JR (2019) Fluoride removal from water by ceramic oxides from cerium and manganese solutions. J Mol Liq 286:110880. https://doi.org/10.1016/j.molliq.2019.110880

    Article  CAS  Google Scholar 

  18. Imamura S, Shono M, Okamoto N, Hamada A, Ishida S (1996) Effect of cerium on the mobility of oxygen on manganese oxides. Appl Catal A 142:279–288. https://doi.org/10.1016/0926-860X(96)00095-6

    Article  CAS  Google Scholar 

  19. Cannilla C, Bonura G, Arena F, Rombi E, Frusteri F (2012) How surface and textural properties affect the behaviour of Mn-based catalysts during transesterification reaction to produce biodiesel. Catal Today 195:32–43. https://doi.org/10.1016/j.cattod.2012.04.051

    Article  CAS  Google Scholar 

  20. Shi LM, Chu W, Qu FF, Luo SZ (2007) Low-temperature catalytic combustion of methane over MnOx–CeO2 mixed oxide catalysts: Effect of preparation method. Catal Lett 13:59–62. https://doi.org/10.1007/s10562-006-9012-6

    Article  CAS  Google Scholar 

  21. Chen J, Chen X, Chen X, Xu W, Xu Z, Jia H, Chen J (2018) Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl Catal B 224:825–835. https://doi.org/10.1016/j.apcatb.2017.11.036

    Article  CAS  Google Scholar 

  22. Kumara P, Matoh L, Kaur R, Štangar UL (2021) Synergic effect of manganese oxide on ceria based catalyst for direct conversion of CO2 to green fuel additive: catalyst activity and thermodynamics study. Fuel 285:119083. https://doi.org/10.1016/j.fuel.2020.119083

    Article  CAS  Google Scholar 

  23. Figueredo MJM, Andana T, Bensaid S, Dosa M, Fino D, Russo N, Piumetti M (2020) Cerium–copper–manganese oxides synthesized via solution combustion synthesis (SCS) for total oxidation of VOCs. Catal Lett 150:1821–1840. https://doi.org/10.1007/s10562-019-03094-x

    Article  CAS  Google Scholar 

  24. Bastos SST, Carabineiro SAC, Órfão JJM, Freitas MMA, Pereira MFR, Figueiredo JL (2012) Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catal Today 180:148–154. https://doi.org/10.1016/j.cattod.2011.01.049

    Article  CAS  Google Scholar 

  25. Li H, Qi G, Tana ZX, Li W, Shen W (2011) Morphological impact of manganese–cerium oxides on ethanol oxidation. Catal Sci Technol 1(9):1677–1682. https://doi.org/10.1039/C1CY00308A

    Article  CAS  Google Scholar 

  26. Esteban CL, Andrés PM, Jorge S, Horacio T (2016) Cerium, manganese and cerium/manganese ceramic monolithic catalysts. study of VOCs and PM removal. J Rare Earths 34:675–682. https://doi.org/10.1016/S1002-0721(16)60078-9

    Article  CAS  Google Scholar 

  27. Ivanova RN, Tsoncheva TS (2017) Total oxidation of ethyl acetate on nanostructured manganese-cerium oxide catalysts supported on mesoporous silica. Bulg Chem Commun 49:176–182

    Google Scholar 

  28. Gan L, Li K, Yang W, Chen J, Peng Y, Li J (2020) Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance. Chem Eng J 391:123473. https://doi.org/10.1016/j.cej.2019.123473

    Article  CAS  Google Scholar 

  29. Liu L, Shi J, Wang R (2019) Facile construction of Mn2O3@CeO2 core@shell cubes with enhanced catalytic activity toward CO oxidation. J Solid State Chem 269:419–427. https://doi.org/10.1016/j.jssc.2018.10.024

    Article  CAS  Google Scholar 

  30. Zhang J, Cao Y, Wang CA, Ran R (2016) Design and preparation of MnO2/CeO2-MnO2 double-shelled binary oxide hollow spheres and their application in CO oxidation. ACS Appl Mater Interfaces 8(13):8670–8677. https://doi.org/10.1021/acsami.6b00002

    Article  CAS  PubMed  Google Scholar 

  31. Peng C, Yu D, Wang L, Yu X, Zhao Z (2021) Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants. J Mater Chem A 9:12947–12980. https://doi.org/10.1039/D1TA00911G

    Article  CAS  Google Scholar 

  32. Jiang Y, Gao J, Zhang Q, Liu Z, Fu M, Wu J, Hu Y, Ye D (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87. https://doi.org/10.1016/j.cej.2019.03.233

    Article  CAS  Google Scholar 

  33. Delimaris D, Ioannides T (2017) Intrinsic activity of MnOx-CeO2 catalysts in ethanol oxidation. Catalysts 7:339–350. https://doi.org/10.3390/catal7110339

    Article  CAS  Google Scholar 

  34. Qi G, Li W (2015) NO oxidation to NO2 over manganese-cerium mixed oxides. Catal Today 258:205–213. https://doi.org/10.1016/j.cattod.2015.03.020

    Article  CAS  Google Scholar 

  35. Chen H, Sayari A, Adnot A, Larachi F (2001) Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation. Appl Catal B 32:195–204. https://doi.org/10.1016/S0926-3373(01)00136-9

    Article  Google Scholar 

  36. Tsoncheva T, Mileva A, Issa G, Dimitrov M, Kovacheva D, Henych J, Scotti N, Kormunda M, Atanasova G, Stengl V (2017) Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection. Appl Surf Sci 396:1289–1302. https://doi.org/10.1016/j.apsusc.2016.11.146

    Article  CAS  Google Scholar 

  37. Tsoncheva T, Issa G, Genova I, Dimitrov M, Kovacheva D, Henychc J, Kormunda M, Scotti N, Tolasz J, Štengl V (2019) Structure and catalytic activity of hydrothermally obtained titanium-tin binary oxides for sustainable environment: evaluation and control. Microporous Mesoporous Mater 276:223–231. https://doi.org/10.1016/j.micromeso.2018.10.004

    Article  CAS  Google Scholar 

  38. Machida M, Uto M, Kurogi D, Kijima T (2000) MnOx−CeO2 binary oxides for catalytic NOx sorption at low temperatures sorptive removal of NOx. Chem Mater 12:3158–3164. https://doi.org/10.1021/cm000207r

    Article  CAS  Google Scholar 

  39. Hao B, Sun Y, Shen Q, Zhang X, Zhang Z (2020) Insight into structure defects and catalytic mechanism for NO oxidation over Ce0.6Mn0.4Ox solid solutions catalysts: effect of manganese precursors. Chemosphere 243:125406. https://doi.org/10.1016/j.chemosphere.2019.125406

    Article  CAS  PubMed  Google Scholar 

  40. Song H, Hu F, Peng Y, Li K, Bai S, Li J (2018) Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/TiO2: synergistic effect of chemical catalysis and dielectric constant. Chem Eng J 347:447–454. https://doi.org/10.1016/j.cej.2018.04.018

    Article  CAS  Google Scholar 

  41. Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J Chem Soc Dalton Trans 17:1686–1698. https://doi.org/10.1039/DT9760001686

    Article  Google Scholar 

  42. Zhao H, Han W, Dong F, Tang Z (2018) Highly-efficient catalytic combustion performance of 1,2-dichlorobenzene over mesoporous TiO2–SiO2 supported CeMn oxides: the effect of acid sites and redox sites. J Ind Eng Chem 64:194–205. https://doi.org/10.1016/j.jiec.2018.03.016

    Article  CAS  Google Scholar 

  43. Dai Y, Wang X, Dai Q, Li D (2012) Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl Catal B 111:141–149. https://doi.org/10.1016/j.apcatb.2011.09.028

    Article  CAS  Google Scholar 

  44. Kapteijn F, Singoredjo L, Andreini A (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 3:173–189. https://doi.org/10.1016/0926-3373(93)E0034-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from project KP-06-PM-39/1/2019 is acknowledged. This work was supported by the European Regional Development Fund within the Operational Programme “Science and Education for Smart Growth 2014–2020” under the Project CoE “National center of mechatronics and clean technologies “BG05M2OP001-1.001-0008”. The authors thank to Jiří Henych and Jakub Tolasz from the Institute of Inorganic Chemistry, Czech Republic, for TEM/ SEM and Raman analyses.

Author information

Authors and Affiliations

Authors

Contributions

CRediT authorship contribution statement. GI: conceptualization, methodology, data curation, writing original draft, supervision, project administration, writing—review and editing. MD: investigation, writing—original draft. RI: visualization, investigation. MK: investigation, writing—original draft. DK: investigation, writing—original draft. TT: conceptualization, writing original draft, supervision. Project administration.

Corresponding author

Correspondence to Gloria Issa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1449 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, G., Dimitrov, M., Ivanova, R. et al. Mixed oxides of cerium and manganese as catalysts for total oxidation of ethyl acetate: effect of preparation procedure. Reac Kinet Mech Cat 135, 105–121 (2022). https://doi.org/10.1007/s11144-021-02135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02135-0

Keywords

Navigation