Skip to main content
Log in

Study of the reactivity of 1,1’-dimethylbistetrazole towards catalytic hydrogenation and chemical reduction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Investigating the possibility of a straightforward formation of tetrazoline or tetrazolidine structures, the reactivity of a tetrazole derivative towards reducing conditions has been studied. The catalytic hydrogenation of 1,1’-dimethylbistetrazole (DMBT) was carried out using various catalysts (Pd/C, Pt/C, Rh/C, Pd/Pt/C, Lindlar, PtO2 and Raney Ni) over a wide range of hydrogen pressure (35–150 bar) and a temperature range from 20 to 60 °C. This exhaustive study enabled to find the optimal conditions for DMBT hydrogenation and to suggest a plausible reaction mechanism. The chemical reduction of DMBT was conducted using several hydrides (BH3, NaBH4, DIBAL and LiAlH4). The reduction products were identified subsequently to conditions optimizing. The suggested reaction mechanism, featuring a retro-[3 + 2]-cycloaddition, was validated by both experimental and theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Scheme 4
Fig. 7
Scheme 5

Similar content being viewed by others

References

  1. Klapötke TM (2007) High energy density materials. Springer, Heidelberg

    Book  Google Scholar 

  2. Klapötke TM, Mirò Sabaté C (2008) Chem Mater 20:3629–3637

    Article  Google Scholar 

  3. Klapötke TM, Sproll SM (2009) Eur J Org Chem 2009:4284–4289

    Article  Google Scholar 

  4. Klapötke TM, Stierstorfer J (2009) J Am Chem Soc 131:1122–1134

    Article  Google Scholar 

  5. Klapötke TM, Minar NK, Stierstorfer J (2009) Polyhedron 28:13–26

    Article  Google Scholar 

  6. Baroody EE, Carpenter GA (1979) J Chem Eng Data 24(1):3–6

    Article  CAS  Google Scholar 

  7. Krageloh K, Anderson GH, Stang PJ (1984) J Am Chem Soc 106:6015–6021

    Article  CAS  Google Scholar 

  8. Tokitoh N, Suzuki T, Itami A, Goto M, Ando W (1989) Tetrahedron Lett 30:1249–1252

    Article  CAS  Google Scholar 

  9. Bast K, Behrens M, Durst T, Grashey R, Huisgen R, Schiffer R, Temme R (1998) Eur J Org Chem 1998:379–385

    Article  Google Scholar 

  10. Breton GW, Hahn LA, Martin KL (2019) Acta Crystallogr Sect C 75:1208–1212

    Article  CAS  Google Scholar 

  11. Linke KH, Dahm J (1969) Z Nat B 24:260

    CAS  Google Scholar 

  12. Gilloux T (2014) PhD dissertation, Université Claude Bernard Lyon 1 n°290–2014

  13. Park YC, Ko SW, Hwang GS (2009) Korean Patent KR2009027061

  14. Roucoux A, Schulz J, Patin H (2003) Adv Synth Catal 345:222–229

    Article  CAS  Google Scholar 

  15. Harada T, Ikeda S, Ng YH, Sakata T, Mori H, Torimoto T, Matsumura M (2003) Adv Funct Mater 18:2190–2196

    Article  Google Scholar 

  16. Falini G, Gualandi A, Savoia D (2009) Synthesis 14:2440–2446

    Google Scholar 

  17. Buil ML, Esteruelas MA, Niembro S, Olivan M, Orzechowski L, Pelayo C, Vallribera A (2010) Organometallics 29:4375–4383

    Article  CAS  Google Scholar 

  18. Hu S, Xue M, Chen H, Shen J (2010) Chem Eng J 162:371–379

    Article  CAS  Google Scholar 

  19. Zahmakiran M, Tonbul Y, Özkar S (2010) J Am Chem Soc 132:6541–6549

    Article  CAS  Google Scholar 

  20. Calderon-Moreno JM, Pol VG, Popa M (2011) Eur J Org Chem 2011:2856–2862

    Article  CAS  Google Scholar 

  21. Paradies J (2013) Synlett 24:777–780

    Article  CAS  Google Scholar 

  22. Yang B, Gong X-Q, Wang H-F, Cao X-M, Rooney JJ, Hu P (2013) J Am Chem Soc 135:15244–15250

    Article  CAS  Google Scholar 

  23. Gaponik PN, Degtyarik MM, Lyakhov AS, Matulis VE, Ivashkevich OA, Quesada M, Reedijk J (2005) Inorg Chim Acta 358:3949–3957

    Article  CAS  Google Scholar 

  24. Hassan N, Weinberger P, Mereiter K, Werner F, Molnar G, Bousseuksou A, Valtiner M, Linert W (2008) Inorg Chem Acta 361:1291–1297

    Article  CAS  Google Scholar 

  25. Luo Y-R (2002) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Galinovsky F, Weiser R (1950) Experientia 6:377

    Article  CAS  Google Scholar 

  27. Bergmann ED, Lavie D, Pinchas S (1951) J Am Chem Soc 73:5662–5664

    Article  CAS  Google Scholar 

  28. Gaylord NG, Kay DJ (1955) J Am Chem Soc 77:6641–6642

    Article  CAS  Google Scholar 

  29. Laforge RA, Cosgrove CE, D’Adamo A (1956) J Org Chem 21:988–992

    Article  CAS  Google Scholar 

  30. Duchamp E, Deschênes SB, Hanessian S (2019) Org Lett 21:6593–6596

    Article  CAS  Google Scholar 

  31. Fair HD, Walker RF (1977) Energetic materials. Physics and chemistry of the inorganic azides, vol 1. Plenum Press, New York

    Google Scholar 

Download references

Acknowledgements

Financial support by CNES, ArianeGroup, CNRS and Université Claude Bernard Lyon 1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaza Darwich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilloux, T., Jacob, G., Labarthe, E. et al. Study of the reactivity of 1,1’-dimethylbistetrazole towards catalytic hydrogenation and chemical reduction. Reac Kinet Mech Cat 134, 851–865 (2021). https://doi.org/10.1007/s11144-021-02118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02118-1

Keywords

Navigation