Skip to main content
Log in

Zirconium-Based Catalysts in Organic Synthesis

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO2 fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 2
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Fig. 3
Fig. 4
Fig. 5
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27

reproduced from Ref. [138] with permission of Springer) [138]

Scheme 28
Scheme 29
Scheme 30

reproduced from Ref. 155 with permission of the Royal Society of Chemistry) [154]

Scheme 31
Scheme 32

reproduced from Ref. [157] with permission of ACS Publications) [156]

Scheme 33
Scheme 34

reproduced from Ref. [159] with permission of Elsevier) [158]

Scheme 35

reproduced from Ref. [161] with permission of ACS Publications) [160]

Fig. 6
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Fig. 7
Scheme 41
Fig. 8

Similar content being viewed by others

References

  1. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  2. Rajesh VJ, Yokoyama K, Santosh M, Arai S, Oh CW, Kim SW (2006) Zirconolite and baddeleyite in an ultramafic suite from southern india: early ordovician carbonatite-type melts associated with extensional collapse of the Gondwana Crust. J Geol 114:171–188

    Article  CAS  Google Scholar 

  3. Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, New York

    Google Scholar 

  5. Housecroft CE, Harpe AG (2001) Inorganic chemistry. Prentice Hall, New York

    Google Scholar 

  6. Chakraborti AK, Gulhane R (2004) Zirconium(IV) chloride as a new, highly efficient, and reusable catalyst for acetylation of phenols, thiols, amines, and alcohols under solvent-free conditions. Synlett 20:627–630

    Article  CAS  Google Scholar 

  7. Shamshuddin SZM (2005) Sulfated zirconia. Synlett 25:361–362

    Article  CAS  Google Scholar 

  8. Farnworth F, Jones SL, McAlpine I (1980) Specialty inorganic chemicals, special publication No 40. Royal society of Chemistry, London

    Google Scholar 

  9. Beller M, Bolm C (2004) Transition metals for organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Söderberg BCG (2004) Transition metals in organic synthesis: highlights for the year 2002. Coord Chem Rev 248:1085–1158

    Article  CAS  Google Scholar 

  11. Peng L-F, Hu Z-F, Lu Q-C, Tang Z-L, Jiao Y-C, Xu X-H (2019) DESs: green solvents for transition metal catalyzed organic reactions. Chin Chem Lett 30:2151–2156

    Article  CAS  Google Scholar 

  12. Peng L-F, Hu Z-F, Tang Z-L, Jiao Y-C, Xu X-H (2019) Recent progress in transition metal catalyzed cross coupling of nitroarenes. Chin Chem Lett 30:1481–1487

    Article  CAS  Google Scholar 

  13. Peng L-F, Zhang S-W, Wang B-H, Xun M-S, Tang Z-L, Jiao Y-C, Xu X-H (2018) Synthesis of cyclic phenyl polyynes: Ph2P(O)-deprotection/intramolecular Eglington coupling cyclization. Chin J Org Chem 38:519–525

    Article  CAS  Google Scholar 

  14. Peng L-F, Wang B-H, Wang M, Tang Z-L, Jiang Y-Z, Jiao Y-C, Xu X-H (2018) A one-pot method for the synthesis of phenylalkynyl-substituted terminal alkynes by deprotection/stannylation followed by a Migita-Kosugi-Stille coupling. J Chem Res 42:235–238

    Article  CAS  Google Scholar 

  15. Yang L, Lin J, Kang L, Zhou W, Ma D-Y (2018) Lewis acid-catalyzed reductive amination of aldehydes and ketones with N, N-dimethylformamide as dimethylamino source, reductant and solvent. Adv Synth Catal 360:485–490

    Article  CAS  Google Scholar 

  16. Smitha G, Reddy ChS (2007) ZrCl4-catalyzed aza-michael addition of carbamates to enones: synthesis of Cbz-protected β-amino ketones. Catal Commun 8:434–436

    Article  CAS  Google Scholar 

  17. Homerin G, Baudelet D, Dufrénoy P, Rigo B, Lipka E, Dezitter X, Furman C, Millet R, Ghinet A (2016) ZrCl4 as a new catalyst for ester amidation: an efficient synthesis of h-P2X7R antagonists. Tetrahedron Lett 57:1165–1170

    Article  CAS  Google Scholar 

  18. Liu Y-Y, Zou J-H, Guo B-B, Ren Y-H, Wang Z-T, Song Y-J, Yu Y, Wu L (2020) Selective photocatalytic oxidation of thioanisole on DUT-67(Zr) mediated by surface coordination. Langmuir 36:2199–2208

    Article  CAS  PubMed  Google Scholar 

  19. Culver DB, Dorn RW, Venkatesh A, Meeprasert J, Rossini AJ, Pidko EA, Lipton AS, Lief GR, Conley MP (2021) Active sites in a heterogeneous organometallic catalyst for the polymerization of ethylene. ACS Cent Sci 7:1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lipshutz BH, Butler T, Lower A (2006) Controlling regiochemistry in negishi carboaluminations. Fine tuning the ligand on zirconium. J Am Chem Soc 128:15396–15398

    Article  CAS  PubMed  Google Scholar 

  21. Romero N, Dufrois Q, Crespo N, Pujol A, Vendier L, Etienne M (2020) Regioselective C–F bond activation/C–C bond formation between fluoropyridines and cyclopropyl groups at zirconium. Organometallics 39(12):2245–2256

    Article  CAS  Google Scholar 

  22. Takahashi T, Xi C-J, Ura Y, Nakajima K (2000) Metallo-esterification of alkynes: reaction of alkynes with Cp2ZrEt2 and chloroformate. J Am Chem Soc 122:3228–3229

    Article  CAS  Google Scholar 

  23. Koperniku A, Schafer LL (2021) Zirconium catalyzed hydroaminoalkylation for the synthesis of α-arylated amines and N-heterocycles. Chem Eur J 27:6334–6339

    Article  CAS  PubMed  Google Scholar 

  24. Braun C, Bräse S, Schafer LL (2017) Planar-chiral [2.2] paracyclophane-based amides as proligandsfor titanium- and zirconium-catalyzed hydroamination. Eur J Org Chem 25:1760–1764

    Article  CAS  Google Scholar 

  25. Nifantev EI, Vinogradova AA, Vinogradova AA, Sedovc IV, Dorokhovc VG, Lyadova AS, Ivchenko VP (2018) Structurally uniform 1-hexene, 1-octene, and 1-decene oligomers: zirconocene/MAO-catalyzed preparation, characterization, and prospects of their use as low-viscosity low-temperature oil base stocks. Appl Catal A 549:40–50

    Article  CAS  Google Scholar 

  26. Smitha G, Chandrasekhar S, Sanjeeva Reddy C (2008) Applications of zirconium(IV) chloride in organic synthesis. Synthesis 1:829–855

    Google Scholar 

  27. Zhang Z-H, Li T-S (2009) Applications of zirconium (IV) compounds in organic synthesis. Curr Org Chem 13:1–30

    Article  CAS  Google Scholar 

  28. Guan H-R (2008) Titanium and zirconium mediated or catalyzed umpolung reactions. Curr Org Chem 12:1406–1430

    Article  CAS  Google Scholar 

  29. Fañanás FJ, Rodríguez F (2008) Cross-coupling-elimination reactions mediated or catalyzed by zirconium complexes: a valuable tool in organic synthesis. Eur J Org Chem 2:1315–1329

    Article  CAS  Google Scholar 

  30. Dzhemilev UM, Ibragimov AG (2010) Catalytic cyclometalation reaction of unsaturated compounds in synthesis of magnesa- and aluminacarbocycles. J Organomet Chem 695:1085–1110

    Article  CAS  Google Scholar 

  31. Negishi E (2007) Transition metal-catalyzed organometallic reactions that have revolutionized organic synthesis. Bull Chem Soc Jpn 80:233–257

    Article  CAS  Google Scholar 

  32. Kuniyasu H, Kambe N (2006) Transition metal-catalyzed carbochalcogenation of alkynes. Chem Lett 35:1320–1325

    Article  CAS  Google Scholar 

  33. Marek I (2002) Tianium and zirconium in organic synyhesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. Yamamoto H, Ishihara K (2008) Acid catalysis in modern organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  35. Shen W, Wang L-M, Feng J-J, Tian H (2008) Highly efficient synthesis of homoallylic alcohols and amines via allylation of aldehydes and imines catalyzed by ZrOCl2·8H2O in water. Tetrahedron Lett 49:4047–4049

    Article  CAS  Google Scholar 

  36. Vijender M, Kishore P, Satyanarayana B (2008) Zirconium tetrachloride-SiO2 catalyzed knoevenagel condensation: a simple and efficient protocol for the synthesis of substituted electrophilic alkenes. ARKIVOC xiii:122–128

    Article  Google Scholar 

  37. Mo L-P, Ma Z-C, Zhang ZH (2005) CuBr2-catalyzed synthesis of bis(indolyl)methanes. Synth Commun 35:1997–2004

    Article  CAS  Google Scholar 

  38. Zhang Z-H, Lin J (2007) Efficient and convenient method for the synthesis of symmetrical triindolylmethanes catalyzed by iodine. Synth Commun 37:209–215

    Article  CAS  Google Scholar 

  39. Jafarpour M, Rezaeifard A, Golshani T (2009) A New catalytic method for ecofriendly synthesis of bis and trisindolylmethanes by zirconyldodecylsulfate under mild conditions. J Heterocycl Chem 46:535–539

    Article  CAS  Google Scholar 

  40. Jafarpour F, Bardajee GR, Pirelahi H, Oroojpour V, Dehnamaki H, Rahmdel S (2009) An efficient solvent-free synthetic technique of 4,4′-diaminotriarylmethane leuco materials. Chin J Chem 27:1415–1419

    Article  CAS  Google Scholar 

  41. Hirama M, Kato Y, Seki C, Nakano H, Takeshita M, Oshikiri N, Iyoda M, Matsuyama H (2010) An efficient synthesis of chiral isoquinuclidines by Diels–Alder reaction using lewis acid catalyst. Tetrahedron 66:7618–7624

    Article  CAS  Google Scholar 

  42. Gessner VH, Tannaci JF, Miller AD, Tilley TD (2011) Assembly of macrocycles by zirconocene mediated, reversible carbon-carbon bond formation. Acc Chem Res 44:435–446

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W-X, Zhang S-G, Xi Z-F (2011) Zirconocene and Si-tethered diynes: a happy match directed toward organometallic chemistry and organic synthesis. Acc Chem Res 44:541–551

    Article  CAS  PubMed  Google Scholar 

  44. Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111:2450–2485

    Article  CAS  PubMed  Google Scholar 

  45. Jones MD (2016) Zirconium-Based catalysts. In: North M (ed) Sustainable catalysis: with non-endangered metals. Part 1. Royal Society of Chemistry, London, pp 199–215

    Google Scholar 

  46. Mo L-P, Zhang Z-H (2011) Recent applications of zirconium compounds as catalysts or reagents in organic synthesis. Curr Org Chem 15:3800–3823

    Article  CAS  Google Scholar 

  47. Khamiyev M, Khanmetov A, Reza VA, Aliyeva R, Hajıyeva-Atayi K, Akhundova Z, Khamiyeva G (2020) Zirconium catalyzed ethylene oligomerization. Appl Organometal Chem 34:e5409–e5430

    Article  CAS  Google Scholar 

  48. Parise L, Pellacani L, Sciubba F, Trulli L, Fioravanti S (2015) Stereoselective ZrCl4-catalyzed mannich-type reaction of β-keto esters with chiral trifluoromethyl aldimines. J Org Chem 80:8300–8306

    Article  CAS  PubMed  Google Scholar 

  49. Lundberg H, Tinnis F, Zhang J-J, Algarra AG, Himo F, Adolfsson H, Algarra AG, Adolfsson H (2017) Mechanistic elucidation of zirconium-catalyzed direct amidation. J Am Chem Soc 139:2286–2295

    Article  CAS  PubMed  Google Scholar 

  50. Arnold K, Davies B, Giles RL, Grosjean C, Smith GE, Whiting A (2006) To catalyze or not to catalyze? Insight into direct amide bond formation from amines and carboxylic acids under thermal and catalyzed conditions. Adv Synth Catal 348:813–820

    Article  CAS  Google Scholar 

  51. Charville H, Jackson DA, Hodges G, Whiting A, Wilson MR (2011) The uncatalyzed direct amide formation reaction-mechanism studies and the key role of carboxylic acid H-bonding. Eur J Org Chem 2011:5981–5990

    Article  CAS  Google Scholar 

  52. Al-Zoubi RM, Marion O, Hall DG (2008) Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew Chem Int Ed 47:2876–2879

    Article  CAS  Google Scholar 

  53. Sridhar G, Somnath M, Sharma GVM, Prashanth T (2017) ZrCl4-mediated synthesis of 1,2,3-triazoles from vinyl nitrates and their biological evaluation. Synth Commun 47:551–556

    Article  CAS  Google Scholar 

  54. Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  PubMed  Google Scholar 

  55. Aher UP, Srivastava D, Jadhav HS, Singh GP, Jayashree BS, Shenoy GG (2020) Large-scale stereoselective synthesis of 1,3-oxathiolane nucleoside, lamivudine, via ZrCl4-mediated N-glycosylation. Org Process Res Dev 24:387–397

    Article  CAS  Google Scholar 

  56. Choi W-B, Wilson LJ, Yeola S, Liotta DC (1991) In situ complexation directs the stereochemistry of N-glycosylation in the synthesis of oxathiolanyl and dioxolanyl nucleoside analogues. J Am Chem Soc 113:9377–9379

    Article  CAS  Google Scholar 

  57. Kelly MJ, Barthel A, Maheu C, Sodpiban O, Dega F-B, Vummaleti SVC, Abou-Hamad E, Pelletier JDA, Cavallo L, D’Elia V, Basset JM (2017) Conversion of actual flue gas CO2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst. J CO2 Util 20:243–252

    Article  CAS  Google Scholar 

  58. Li K-R, Meng F-J, Jiang W-F, Shi L (2021) ZrCl4-catalyzed nucleophilic dearomatization of 2-hydroxy-pyrimidines: a concise synthesis of novel 3,4-dihydropyrimidin-2(1H)-ones containing a phosphonic ester group. Tetrahedron Lett 73:153149

    Article  CAS  Google Scholar 

  59. Kigoshi S, Kanazawa A, Kanaoka S, Aoshima S (2019) Structure-property relationship of phenoxyimine ligands/metal chloride initiating systems for controlled cationic polymerizations of alkyl vinyl ethers. J Polym Sci Part A Polym Chem 57:2021–2029

    Article  CAS  Google Scholar 

  60. González-Delgado JA, Romero MA, Pischel U, Arteaga JF (2017) Universal access to megastigmanes through controlled cyclization towards highly substituted cyclohexenes. Org Biomol Chem 15:408–415

    Article  CAS  PubMed  Google Scholar 

  61. Shirini F, Zolfigol MA, Mollarazi E (2005) KBr O3/ZrClO2·8H2O: an efficient reagent system for the oxidation of alcohols. Synth Commun 35:1541–1545

    Article  CAS  Google Scholar 

  62. Nakayama M, Sato A, Ishihara K, Yamamoto H (2004) Water-tolerant and reusable catalysts for direct ester condensation between equimolar amounts of carboxylic acids and alcohols. Adv Synth Catal 346:1275–1279

    Article  CAS  Google Scholar 

  63. Mohammadpoor-Baltork I, Khosropour AR, Hojati SF (2007) ZrOCl2·8H2O as an environmentally friendly and recyclable catalyst for the chemoselective synthesis of 2-aryloxazolines and bis-oxazolines under thermal conditions and microwave irradiation. Catal Commun 8:200–204

    Article  CAS  Google Scholar 

  64. Zhang Z-H, Li T-S, Li J-J (2007) Synthesis of enaminones and enamino esters catalysed by ZrOCl2·8H2O. Catal Commun 8:1615–1620

    Article  CAS  Google Scholar 

  65. Oliveira AFCS, Souza APM, Oliveira AS, Silva ML, Oliveira FM, Santos EG, Silva ÍEP, Ferreira RS, Villela FS, Martins FT, Leal DHS, Vaz BG, Teixeira RR, Paula SO (2018) Zirconium catalyzed synthesis of 2-arylidene indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease. Eur J Med Chem 149:98–109

    Article  CAS  PubMed  Google Scholar 

  66. Hulsbosch J, Claes L, De Vos DE (2018) Zirconium-catalysed N-acylation of lactams using unactivated carboxylic acids. Tetrahedron Lett 59:1646–1650

    Article  CAS  Google Scholar 

  67. Zhang H-G, Tong X-L, Liu Z-H, Wan J, Yu L-H, Zhang Z-Y (2018) The sustainable heterogeneous catalytic reductive amination of lignin models to produce aromatic tertiary amines. Catal Sci Technol 8:5396–5400

    Article  CAS  Google Scholar 

  68. Rashed MN, Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S (2021) Zirconium oxide-catalyzed direct amidation of unactivated esters under continuous-flow conditions. Adv Synth Catal 363:2529–2535

    Article  CAS  Google Scholar 

  69. Temóteo RL, Silva MJ, Rodrigues FÁ, Silva WF, Silva DJ, Oliveira CM (2018) A kinetic investigation of triacetin methanolysis and assessment of the stability of a sulfated zirconium oxide catalyst. J Am Oil Chem Soc 95:865–874

    Article  CAS  Google Scholar 

  70. Shokoohi R, Poureshgh Y, Parastar S, Ahmadi S, Shabanloo A, Rahmani Z, Asl FB, Tabar MV (2018) Comparing the efficiency of UV/ZrO2 and UV/H2O2/ZrO2 photocatalytic processes in furfural removal from aqueous solution. Appl Water Sci 8(182):1–8

    CAS  Google Scholar 

  71. Corma A (1997) Solid acid catalysts. Curr Opin Solid State Mater Sci 2:63–75

    Article  CAS  Google Scholar 

  72. Clearfield A, Costantino U (1996) Comprehensive supramolecular chemistry. Elsevier, Amsterdam

    Google Scholar 

  73. Mendes LC, Silva DF, Araujo LJF, Lino AS (2014) Zirconium phosphate organically intercalated/exfoliated with long chain amine. J Therm Anal Calorim 118:1461–1469

    Article  CAS  Google Scholar 

  74. Bogdanov SG, Valiev EZ, Dorofeev YA, Pirogov AN, Sharygin LM, Moiseev VE, Galkin VM (1997) Structure of zirconium phosphate gels produced by the sol-gel method. J Phys Condens Matter 9:4031–4039

    Article  CAS  Google Scholar 

  75. Khalameida S, Diyuk V, Zaderko A, Sydorchuk V, Skubiszewska-Zięba J (2018) The study of modified zirconium catalysts for selective dehydration of propan-2-ol. J Therm Anal Calorim 131:2361–2371

    Article  CAS  Google Scholar 

  76. Liu Q-Y, Zhang T, Liao Y-H, Cai C-L, Tan J, Wang T-J, Qiu S-B, He M-H, Ma L-L (2017) Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C. ACS Sustain Chem Eng 5:5940–5950

    Article  CAS  Google Scholar 

  77. Ma M-W, Hou P, Cao J-J, Liu H, Yan X-Y, Xu X-L, Yue H-J, Tian G, Feng S-H (2019) Simple basic zirconium carbonate: low temperature catalysis for hydrogen transfer of biomass-derived carboxides. Green Chem 21:5969–5979

    Article  CAS  Google Scholar 

  78. Michiue K, Jordan RF (2008) Comparison of olefin polymerization behavior of sterically crowded tris(pyrazolyl)borate group 4 metal complexes. J Mol Catal A Chem 282:107–116

    Article  CAS  Google Scholar 

  79. Liu D-B, Wang S-B, Wang H-T, Chen W (2006) Trialkylaluminums: efficient cocatalysts for bis(phenoxy-imine)zirconium complexes in ethylene polymerization. J Mol Catal A Chem 246:53–58

    Article  CAS  Google Scholar 

  80. Said M, Hughes DL, Bochmann M (2006) Synthesis, structure and catalytic activity of phosphine-substituted zirconium salicylaldiminato complexes. Inorg Chim Acta 359:3467–3473

    Article  CAS  Google Scholar 

  81. Altaf AA, Badshah A, Khan N, Marwat S, Ali S (2011) Zirconium complexes in homogeneous ethylene polymerization. J Coord Chem 64:1815–1836

    Article  CAS  Google Scholar 

  82. Negishi E, Horn DEV, Yoshida T (1985) Controlled carbometalation 20.. Carbometalation reaction of alkynes with organoalene-zirconocene derivatives as a route to stereo-and regiodefined trisubstituted alkenes. J Am Chem Soc 107:6639–6647

    Article  CAS  Google Scholar 

  83. Negishi E, Kondakov DY, Choueiry D, Kasai K, Takahashi T (1996) Multiple mechanistic pathways for zirconium-catalyzed carboalumination of alkynes. requirements for cyclic carbometalation processes involving C–H activation. J Am Chem Soc 118:9577–9588

    Article  CAS  Google Scholar 

  84. Zhurakovskyi O, Dias RMP, Noble A, Aggarwal VK (2018) Stereo- and regiocontrolled methylboration of terminal alkynes. Org Lett 20:3136–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshida H (2016) Borylation of alkynes under base/coinage metal catalysis: some recent developments. ACS Catal 6:1799–1811

    Article  CAS  Google Scholar 

  86. Barbeyron R, Benedetti E, Cossy J, Vasseur J-J, Arseniyadis S, Smietana M (2014) Recent developments in alkyne borylations. Tetrahedron 70:8431–8452

    Article  CAS  Google Scholar 

  87. Lenstra DC, Nguyen DT, Mecinović J (2015) Zirconium-catalyzed direct amide bond formation between carboxylic esters and amines. Tetrahedron 71:5547–5553

    Article  CAS  Google Scholar 

  88. Matt C, Köelblin F, Streuff J (2019) Reductive C−O, C−N, and C−S cleavage by a zirconium catalyzed hydrometalation/β-elimination approach. Org Lett 21:6983–6988

    Article  CAS  PubMed  Google Scholar 

  89. Negishi E, Yoshida T (1980) A novel zirconium catalyzed hydroalumination of olefins. Tetrahedron Lett 21:1501–1504

    Article  CAS  Google Scholar 

  90. Schwartz J, Labinger JA (1976) Hydrozirconation: a new transition metal reagent for organic synthesis. Angew Chem Int Ed Engl 15:333–340

    Article  Google Scholar 

  91. Wipf P, Jahn H (1996) Synthetic applications of organochlorozirconocene complexes. Tetrahedron 52:12853–12910

    Article  CAS  Google Scholar 

  92. Hart DW, Schwartz J (1974) Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J Am Chem Soc 96:8115–8116

    Article  CAS  Google Scholar 

  93. Annby U, Karlsson S, Gronowitz S, Hallberg A, Alvhäll J, Svenson R (1993) Hydrozirconation—isomerisation. Reactions of terminally functionalised olefins with zirconocene hydrides and general aspects. Acta Chem Scand 47:425–433

    Article  CAS  Google Scholar 

  94. Annby U, Gronowitz S, Hallberg A (1990) Reactions with three hydrozirconiation reagents. Acta Chem Scand 44:862–863

    Article  CAS  Google Scholar 

  95. Marek I, Chinkov N, Levin A (2006) A zirconium promenade—an efficient tool in organic synthesis. Synlett 25:501–514

    Article  CAS  Google Scholar 

  96. Joseph J, Preethalayam P, Radhakrishnan KV, Jaroschik F, Vasse J-L (2015) Titanium and zirconium hydride-catalyzed regioselective isomerization of 1,4-dihydrofulvenes: access to 1-substituted 1,2-dihydrofulvenes. Org Lett 17:6202–6205

    Article  CAS  PubMed  Google Scholar 

  97. Birepinte M, Liautard V, Chabaud L, Pucheault M (2020) Zirconium-catalyzed synthesis of alkenylaminoboranes: from a reliable preparation of alkenylboronates to a direct stereodivergent access to alkenyl bromides. Org Lett 22:2838–2843

    Article  CAS  PubMed  Google Scholar 

  98. Shi X-N, Li S-D, Wu L-P (2019) H2-acceptorless dehydrogenative boration and transfer boration of alkenes enabled by zirconium catalyst. Angew Chem Int Ed 58:16167–16171

    Article  CAS  Google Scholar 

  99. Baker RT, Nguyen P, Marder TB, Westcott SA (1995) Transition metal catalyzed diboration of vinylarenes. Angew Chem Int Ed Engl 34:1336–1338

    Article  CAS  Google Scholar 

  100. Olsson VJ, Szabó KJ (2009) Functionalization of unactivated alkenes through iridium-catalyzed borylation of carbon−hydrogen bonds. Mechanism and synthetic applications. J Org Chem 74:7715–7723

    Article  CAS  PubMed  Google Scholar 

  101. Ohmura T, Takasaki Y, Furukawa H, Suginome M (2009) Stereoselective synthesis of cis-β-methyl- and phenyl-substituted alkenylboronates by platinum-catalyzed dehydrogenative borylation. Angew Chem Int Ed 48:2372–2375

    Article  CAS  Google Scholar 

  102. Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB (2016) Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem Rev 116:9091–9161

    Article  CAS  PubMed  Google Scholar 

  103. Mazzacano TJ, Mankad NP (2017) Dehydrogenative borylation and silylation of styrenes catalyzed by copper-carbenes. ACS Catal 7:146–149

    Article  CAS  Google Scholar 

  104. Yoshii D, Jin X-J, Mizuno N, Yamaguchi K (2019) Selective dehydrogenative mono- or diborylation of styrenes by supported copper catalysts. ACS Catal 9:3011–3016

    Article  CAS  Google Scholar 

  105. McAlister DR, Erwin DK, Bercaw JE (1978) Reductive elimination of isobutane from an isobutyl hydride derivative of bis(pentamethylcyclopentadienyl)zirconium. J Am Chem Soc 100:5966–5968

    Article  CAS  Google Scholar 

  106. Negishi EI, Cederbaum FE, Takahashi T (1986) Reaction of zirconocene dichloride with alkyllithiums or alkyl grignard reagents as a convenient method for generating a “Zirconocene” equivalant and its use in zirconium-promoted cyclization of alkenes, alkynes, dienes, enynes, and diynes. Tetrahedron Lett 27:2829–2832

    Article  CAS  Google Scholar 

  107. Takahashi T, Kotora M, Fischer R, Nishihara Y, Nakajima K (1995) Oxidative addition of 2-haloalkene to zirconocene. J Am Chem Soc 117:11039–11040

    Article  CAS  Google Scholar 

  108. Al-AliAlMa’adeed M, Krupa I (2015) Polyolefn compounds and materials: fundamentals and industrial applications. Springer, New York

    Google Scholar 

  109. Stürzel M, Mihan S, Mülhaupt R (2016) From multisite polymerization catalysis to sustainable materials and all-polyolefn composites. Chem Rev 116:1398–1433

    Article  CAS  PubMed  Google Scholar 

  110. Baier MC, Zuideveld MA, Mecking S (2014) Post-metallocenes in the industrial production of polyolefns. Angew Chem Int Ed 53:9722–9744

    Article  CAS  Google Scholar 

  111. Gao Y-S, Chen J-Z, Wang Y, Pickens DB, Motta A, Wang QJ, Chung Y-W, Lohr TL, Marks TJ (2019) Highly branched polyethylene oligomers via group IV-catalysed polymerization in very nonpolar media. Nat Catal 2:236–242

    Article  CAS  Google Scholar 

  112. Yin X, Gao H, Yang F, Pan L, Wang B, Ma Z, Li Y-S (2020) Stereoblock polypropylenes prepared by efficient chain shuttling polymerization of propylene with binary zirconium catalysts and iBu3Al. Chin J Polym Sci 38:1192–1201

    Article  CAS  Google Scholar 

  113. Ewen JA, Elder MJ, Jones RL, Rheingold AL, Liable-Sands LM, Sommer RD (2001) Chiral Ansa metallocenes with Cp ring-fused to thiophenes and pyrroles: syntheses, crystal structures, and isotactic polypropylene catalysts. J Am Chem Soc 123:4763–4773

    Article  CAS  PubMed  Google Scholar 

  114. Tynys A, Eilertsen JL, Rytter E (2006) Zirconocene propylene polymerisation: controlling termination reactions. Macromol Chem Phys 207:295–303

    Article  CAS  Google Scholar 

  115. Hendren KD, Hough SA, Knott K, Lu W, Deck PA, Foster EJ (2021) Anchored metallocene linear low-density polyethene cellulose nanocrystal composites. Polym Int 70:564–572

    Article  CAS  Google Scholar 

  116. Ellis WW, Gavrilova A, Liable-Sands L, Rheingold AL, Bosnich B (1999) Homogeneous catalysis. metallocene catalysts for [3+2] nitrone-olefin cycloaddition reactions. Organometallics 18:332–338

    Article  CAS  Google Scholar 

  117. Luinstra GA (1996) Synthesis and reactivity of titanocene and zirconocene triflates. J Organomet Chem 517:209–215

    Article  CAS  Google Scholar 

  118. Jaquith JB, Levy CJ, Bondar GV, Wang S-T, Collins S (1998) Diels–Alder reactions of oxazolidinone dienophiles catalyzed by zirconocene bis(triflate) catalysts: mechanism for asymmetric induction. Organometallics 17:914–925

    Article  CAS  Google Scholar 

  119. Lin S-Q, Bondar GV, Levy CJ, Collins S (1998) Mukaiyama aldol reactions catalyzed by zirconocene bis(triflate) complexes: stereochemistry and mechanisms for C−C bond formation. J Org Chem 63:1885–1892

    Article  CAS  Google Scholar 

  120. Hollis TK, Robison NP, Bosnich B (1992) Homogeneous catalysis. [TiCp2(CF3SO3)2] and [ZrCp2(CF3SO3)2THF], fast and efficient catalysts for the Mukaiyama cross-aldol reaction. Tetrahedron Lett 33:6423–6426

    Article  CAS  Google Scholar 

  121. Qiu R-H, Xu X, Li Y-H, Zhang G-P, Shao L-L, An D-L, Yin S-F (2009) Synthesis and structure of air-stable lewis acidic binuclear complex of zirconocene pentafluorophenylsulfonate and its catalytic application in the allylation of carbonyl compounds with tetraallyltin. Chem Commun 25:1679–1681

    Article  CAS  Google Scholar 

  122. Qiu R-H, Zhu Y-Y, Xu X-H, Li Y-H, Shao L-L, Ren X-F, Cai X-T, An D-L, Yin S-F (2009) Zirconocene bis(perfluorooctanesulfonate)s-catalyzed acylation of alcohols, phenols, thiols, and amines under solvent-free conditions. Catal Commun 10:1889–1892

    Article  CAS  Google Scholar 

  123. Li N-B, Wang X, Qiu R-H, Xu X-H, Chen J-Y, Zhang X-H, Chen S-H, Yin S-F (2014) Air-stable zirconocene bis(perfluorobutanesulfonate) as a highly efficient catalyst for synthesis of α-aminophosphonates via kabachnik-fields reaction under solvent-free condition. Catal Commun 43:184–187

    Article  CAS  Google Scholar 

  124. Qiu R-H, Chen Y, Yin S-F, Xu X-H, Au C-T (2012) A mini-review on air-stable organometallic lewis acids: synthesis, characterization, and catalytic application in organic synthesis. RSC Adv 2:10774–10793

    Article  CAS  Google Scholar 

  125. Qiu R-H, Xu X-H, Peng L-F, Zhao Y-L, Li N-B, Yin S-F (2012) Strong lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions. Chem Eur J 18:6172–6182

    Article  CAS  PubMed  Google Scholar 

  126. Zhang X-H, Zhang X-S, Li N-B, Xu X-H, Qiu R-H, Yin S-F (2014) Synthesis and structure of an air-stable binuclear complex of bis(ethylcyclopentadienyl)zirconium perfluorooctanesulfonate and its catalytic application in one-pot three-component aza-friedel-crafts reactions. Tetrahedron Lett 55:120–123

    Article  CAS  Google Scholar 

  127. Zhang X-H, Xu X-H, Li N-B, Liang Z-W, Tang Z-L (2018) Air-stable μ2-hydroxyl bridged cationic binuclear complexes of zirconocene perfluorooctanesulfonates: their structures, characterization and application. Tetrahedron 74:1926–1932

    Article  CAS  Google Scholar 

  128. Zhang X-H, Qiu R-H, Zhou C-C, Yu J-X, Li N-B, Yin S-F, Xu X-H (2015) Synthesis and structure of an air-stable bis(isopropylcyclopentadienyl) zirconium perfluorooctanesulfonate and its catalyzed benzylation of 1,3-dicarbonyl derivatives with alcohols. Tetrahedron 71:1011–1017

    Article  CAS  Google Scholar 

  129. Li N-B, Wang L-X, Wang H-J, Qiao J, Zhao W-J, Xu X-H, Liang Z-W (2018) Synthesis and structure of an air-stable bis(pentamethylcyclopentadienyl) zirconium pentafluorbezenesulfonate and its application in catalytic epoxide ring-opening reactions. Tetrahedron 74:1033–1039

    Article  CAS  Google Scholar 

  130. Qiu R-H, Zhang G-P, Xu X-H, Zou K-B, Shao L-L, Fang D-W, Li Y-H, Orita A, Saijo R, Mineyama H, Suenobu T, Fukuzumi S, An D-L, Otera J (2009) Metallocene bis(perfluoroalkanesulfonate)s as air-stable cationic lewis acids. J Organomet Chem 694:1524–1528

    Article  CAS  Google Scholar 

  131. Yanagisawa A, Inoue H, Morodome M, Yamamoto H (1993) Highly chemoselective allylation of carbonyl compounds with tetraallyltin in acidic aqueous media. J Am Chem Soc 115:10356–10357

    Article  CAS  Google Scholar 

  132. Reetz MT, Harmat N, Mahrwald R (1992) Ligand effects in grignard additions. Angew Chem Int Ed Engl 31:342–344

    Article  Google Scholar 

  133. Tang Z, Jiang Q-T, Peng L-F, Xu X-H, Li J, Qiu R-H, Au C-T (2017) Zirconocene-catalyzed direct (trans)esterification of acyl acids (esters) and alcohols in a strict 1: 1 ratio under solvent-free conditions. Green Chem 19:5396–5402

    Article  CAS  Google Scholar 

  134. Cherkasov RA, Galkin VI (1998) The Kabachnik–Fields reaction: synthetic potential and the problem of the mechanism. Russ Chem Rev 67:857–882

    Article  Google Scholar 

  135. Wang J-Y, Li N-B, Qiu R-H, Zhang X-H, Xu X-H, Yin S-F (2015) Air-stable zirconocene bis(perfluorobutanesulfonate) as a highly efficient catalyst for synthesis of N-heterocyclic compounds. J Organomet Chem 785:61–67

    Article  CAS  Google Scholar 

  136. Stevens JC, Timmers FJ, Wilson DR, Schmidt GF, Nickias PN, Rosen RK, Knight GW, Lai S-Y (1991) Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith. Eur Patent Appl 1991:EP 0416815 A2

    Google Scholar 

  137. Canich JAM (1991) Olefin polymerization catalysts. European Patent Application. EP 0420436 A1.

  138. Mishra A, Bhajiwala H, Kothari A, Gupta VK (2019) A new class of pyridine-amide containing Ti and Zr based catalysts for olefin polymerization: influence of ligand substituents. Catal Lett 149:3425–3431

    Article  CAS  Google Scholar 

  139. Koperniku A, Foth PJ, Sammis GM, Schafer LL (2019) Zirconium hydroaminoalkylation: an alternative disconnection for the catalytic synthesis of α-arylated primary amines. J Am Chem Soc 141:18944–18948

    Article  CAS  PubMed  Google Scholar 

  140. Roesky PW (2009) Catalytic hydroaminoalkylation. Angew Chem Int Ed 48:4892–4894

    Article  CAS  Google Scholar 

  141. Eisenberger P, Ayinla RO, Lauzon JMP, Schafer LL (2009) Tantalum−amidate complexes for the hydroaminoalkylation of secondary amines: enhanced substrate scope and enantioselective chiral amine synthesis. Angew Chem Int Ed 48:8361–8365

    Article  CAS  Google Scholar 

  142. Nugent WA, Ovenall DW, Holmes SJ (1983) Catalytic C−H activation in early transition-metal dialkylamides and alkoxides. Organometallics 2:161–162

    Article  CAS  Google Scholar 

  143. Payne PR, Garcia P, Eisenberger P, Yim JCH, Schafer LL (2013) Tantalum catalyzed hydroaminoalkylation for the synthesis of α- and β-substituted N-heterocycles. Org Lett 15:2182–2185

    Article  CAS  PubMed  Google Scholar 

  144. Bahena EN, Griffin SE, Schafer LL (2020) Zirconium-catalyzed hydroaminoalkylation of alkynes for the synthesis of allylic amines. J Am Chem Soc 142:20566–20571

    Article  CAS  PubMed  Google Scholar 

  145. Chiu H-C, See X-Y, Tonks IA (2019) Dative directing group effects in Ti-catalyzed [2+2+1] pyrrole synthesis: chemo- and regioselective alkyne heterocoupling. ACS Catal 9:216–223

    Article  CAS  PubMed  Google Scholar 

  146. Kristian KE, Iimura M, Cummings SA, Norton JR, Janak KE, Pang K-L (2009) Mechanism of the reaction of alkynes with a “Constrained Geometry” Zirconaaziridine. PMe3 dissociates more rapidly from the constrained geometry complex than from its Cp2 analogue. Organometallics 28:493–498

    Article  CAS  Google Scholar 

  147. Stürzel M, Mihan S, Mülhaupt R (2016) From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem Rev 116:1398–1433

    Article  CAS  PubMed  Google Scholar 

  148. Baier MC, Zuideveld MA, Mecking S (2014) Post-metallocenes in the industrial production of polyolefins. Angew Chem Int Ed 53:9722–9744

    Article  CAS  Google Scholar 

  149. De Rosa C, Di Girolamo R, Muñoz-García AB, Pavone M, Talarico G (2020) Breaking symmetry rules enhance the options for stereoselective propene polymerization catalysis. Macromolecules (Washington, DC, U S) 53:2959–2964

    Google Scholar 

  150. Press K, Cohen A, Goldberg I, Venditto V, Mazzeo M, Kol M (2011) Salalen titanium complexes in the highly isospecific polymerization of 1-hexene and propylene. Angew Chem 123:3591–3594

    Article  Google Scholar 

  151. Talarico G, Budzelaar PHM (2017) Ligand coordination driven by monomer and polymer chain: the intriguing case of salalen−Ti catalyst for propene polymerization. Macromolecules 50:5332–5336

    Article  CAS  Google Scholar 

  152. Bange CA, Ghebreab MB, Ficks A, Mucha NT, Higham L, Waterman R (2016) Zirconium-catalyzed intermolecular hydrophosphination using a chiral, air-stable primary phosphine. Dalton Trans 45:1863–1867

    Article  CAS  PubMed  Google Scholar 

  153. Bange CA, Waterman R (2018) Zirconium-catalyzed hydroarsination with primary arsines. Polyhedron 156:31–34

    Article  CAS  Google Scholar 

  154. Cimino A, Moscatelli F, Ferretti F, Ragaini F, Germain S, Hannedouche J, Schulz E, Luconi L, Rossin A, Giambastiani G (2016) Novel yttrium and zirconium catalysts featuring reduced Ar-BIANH2 ligands for olefin hydroamination (Ar-BIANH2 = bis-arylaminoacenaphthylene). New J Chem 40:10285–10293

    Article  CAS  Google Scholar 

  155. Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Sobrino S, Martínez-Ferrer J, Garcés A, Navarro M, Rodríguez AM (2020) NNC-scorpionate zirconium-based bicomponent systems for the efficient CO2 fixation into a variety of cyclic carbonates. Inorg Chem 59:12422–12430

    Article  CAS  PubMed  Google Scholar 

  156. Preston AZ, Kim J, Medvedev GA, Delgass WN, Caruthers JM, Abu-Omar MM (2017) Steric and solvation effects on polymerization kinetics, dormancy, and tacticity of Zr-salan catalysts. Organometallics 36:2237–2244

    Article  CAS  Google Scholar 

  157. Wang T-L, Xu H, He J-H, Zhang Y-T (2020) MPV reduction of ethyl levulinate to γ-valerolactone by the biomass-derived chitosan-supported Zr catalyst. New J Chem 44:14686–14694

    Article  CAS  Google Scholar 

  158. Pappuru S, Chakraborty D, Ramkumar V, Chand DK (2017) Ring-opening copolymerization of maleic anhydride or L-lactide with tert-butyl glycidyl ether by using efficient Ti and Zr benzoxazole-substituted 8-hydroxyquinolinate catalysts. Polymer 123:267–281

    Article  CAS  Google Scholar 

  159. Makio H, Terao H, Iwashita A, Fujita T (2011) FI catalysts for olefin polymerization—a comprehensive treatment. Chem Rev 111:2363–2449

    Article  CAS  PubMed  Google Scholar 

  160. Gao Y-S, Christianson MD, Wang Y, Chen J-Z, Marshall S, Klosin J, Lohr TL, Marks TJ (2019) Unexpected precatalyst σ-ligand effects in phenoxyimine Zr-catalyzed ethylene/1-octene copolymerizations. J Am Chem Soc 141:7822–7830

    Article  CAS  PubMed  Google Scholar 

  161. Karbach FF, Severn JR, Duchateau R (2015) Effect of aluminum alkyls on a homogeneous and silica-supported phenoxy-imine titanium catalyst for ethylene trimerization. ACS Catal 5:5068–5076

    Article  CAS  Google Scholar 

  162. Busico V, Cipullo R, Pellecchia R, Talarico G, Razavi A (2009) Hafnocenes and MAO: beware of trimethylaluminum. Macromolecules 42:1789–1791

    Article  CAS  Google Scholar 

  163. Sampson J, Choi G, Akhtar MN, Jaseer EA, Theravalappil R, Al-Muallem HA, Agapie T (2017) Olefin polymerization by dinuclear zirconium catalysts based on rigid teraryl frameworks: effects on tacticity and copolymerization behavior. Organometallics 36:1915–1928

    Article  CAS  Google Scholar 

  164. Sampson J, Bruening M, Akhtar MN, Jaseer EA, Theravalappil R, Garcia N, Agapie T (2021) Copolymerization of ethylene and long-chain functional α-Olefins by dinuclear zirconium catalysts. Organometallics 40:1854–1858

    Article  CAS  Google Scholar 

  165. Li N-B, Wang Y-J, Liu F-J, Zhao X, Xu X-H, An Q, Yun K-M (2019) Air-stable zirconium (IV)-salophen perfluorooctanesulfonate as a highly efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Appl Organomet Chem 34:e5454–e5463

    Google Scholar 

  166. Wang B-L, Zhao H-Q, Wang L-Y, Sun J-M, Zhang Y-F, Cao Z-Z (2017) Immortal ring-opening polymerization of lactides with super high monomer to catalyst ratios initiated by zirconium and titanium complexes containing multidentate amino-bis(phenolate) ligands. New J Chem 41:5669–5677

    Article  CAS  Google Scholar 

  167. Bialek M, Fryga J (2019) Effective copolymerization of ethylene with α, ω-alkenols and homopolymerization of α, ω-alkenols catalyzed by aminophenolate zirconium complex. React Funct Polym 137:11–20

    Article  CAS  Google Scholar 

  168. Yang F, Zhao J-N, Tang X-F, Zhou G-L, Song W-Z, Meng Q-W (2017) Enantioselective α-hydroxylation by modified salen-zirconium(IV)-catalyzed oxidation of β-keto esters. Org Lett 19:448–451

    Article  CAS  PubMed  Google Scholar 

  169. Song J-L, Wu L-Q, Zhou B-W, Zhou H-C, Fan H-L, Yang Y-Y, Meng Q-L, Han B-X (2015) A new porous Zr-containing catalyst with a phenate group: an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone. Green Chem 17:1626–1632

    Article  CAS  Google Scholar 

  170. Samantaray MK, Dey R, Kavitake S, Abou-Hamad E, Bendjeriou-Sedjerari A, Hamieh A, Basset J-M (2016) Synergy between two metal catalysts: a highly active silica-supported bimetallic W/Zr catalyst for metathesis of n-decane. J Am Chem Soc 138:8595–8602

    Article  CAS  PubMed  Google Scholar 

  171. Zhang J, Dong K-J, Luo W-M, Guan H-F (2018) Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors. ACS Omega 3:6206–6216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Abou-Elyazed AS, Sun Y-Y, El-Nahas AM, Yousif AM (2020) A green approach for enhancing the hydrophobicity of UiO-66(Zr) catalysts for biodiesel production at 298 K. RSC Adv 10:41283–41295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shylesh S, Bettinson LA, Aljahri A, Head-Gordon M, Bell AT (2020) Experimental and computational studies of carbon-carbon bond formation via ketonization and aldol condensation over site-isolated zirconium catalysts. ACS Catal 10:4566–4579

    Article  CAS  Google Scholar 

  174. Tschage M, Jung S, Spaniol TP, Okuda J (2015) Polymerization of norbornene using chiral bis(phenolate) zirconium catalysts. Macromol Rapid Commun 36:219–223

    Article  CAS  PubMed  Google Scholar 

  175. Nakata N, Nakamura K, Ishii A (2018) Highly efficient and 1,2-regioselective method for the oligomerization of 1-hexene promoted by zirconium precatalysts with [OSSO]-type bis(phenolate) ligands. Organometallics 37:2640–2644

    Article  CAS  Google Scholar 

  176. Abdolahi S, Hajjami M, Gholamian F (2021) An approach to the synthesis and characterization of HMS/Pr-Rh-Zr as efficient catalyst for synthesis of tetrahydrobenzo[b]pyran and 1,4-dihydropyrano[2,3-c]pyrazole derivatives. Res Chem Intermed 47:1883–1904

    Article  CAS  Google Scholar 

  177. Kamali F, Shirini F (2018) Fe3O4@SiO2-ZrCl2-MNPs: a novel magnetic catalyst for the clean and efficient cascade synthesis of 1-(benzothiazolylamino)methyl-2-naphthol derivatives in the absence of solvent. Appl Organomet Chem 32:e3972–e3983

    Article  CAS  Google Scholar 

  178. Nikoorazm M, Mohammadi M, Khanmoradi M (2020) Zirconium@guanine@MCM-41 nanoparticles: an efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component tandem knoevenagel condensation-michael addition-cyclization reactions. Appl Organomet Chem 34:e5704–e5723

    CAS  Google Scholar 

  179. Safaei-Ghomi J, Javidan A, Ziarati A, Shahbazi-Alavi H (2015) Synthesis of new 2-amino-4H-pyran-3,5-dicarboxylate derivatives using nanocrystalline MIIZr4(PO4)6 ceramics as reusable and robust catalysts under microwave irradiation. J Nanopart Res 17:338–349

    Article  CAS  Google Scholar 

  180. Rani P, Srivastava R (2015) Nucleophilic addition of amines, alcohols, and thiophenol with epoxide/olefin using highly efficient zirconium metal organic framework heterogeneous catalyst. RSC Adv 5:28270–28280

    Article  CAS  Google Scholar 

  181. Mishra AA, Bhanage BM (2019) Zirconium-MOF-catalysed selective synthesis of α-hydroxyamide via the transfer hydrogenation of α-ketoamide. New J Chem 43:6160–6167

    Article  CAS  Google Scholar 

  182. Yi X-C, Xi F-G, Qi Y, Gao E-Q (2015) Synthesis and click modification of an azido-functionalized Zr(IV) metal-organic framework and a catalytic study. RSC Adv 5:893–900

    Article  CAS  Google Scholar 

  183. Zhu S-H, Xue Y-F, Guo J, Cen Y-L, Wang J-G, Fan W-B (2016) Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5. ACS Catal 6:2035–2042

    Article  CAS  Google Scholar 

  184. Li K, Liu K, Ni H, Guan B, Zhan R, Huang Z, Lin H (2018) Electric field promoted ultra-lean methane oxidation over Pd-Ce-Zr catalysts at low temperature. Mol Catal 459:78–88

    Article  CAS  Google Scholar 

  185. Mi R-L, Hu Z, Yang B-L (2019) In situ DRIFTS for the mechanistic studies of 1,4-butanediol dehydration over Yb/Zr catalysts. J Catal 370:138–151

    Article  CAS  Google Scholar 

  186. Wang W-T, Li N, Shi L-L, Ma Y-M, Yang X-F (2018) Vanadium-zirconium catalyst on different support for hydroxylation of benzene to phenol with O2 as the oxidant. Appl Catal A 553:117–125

    Article  CAS  Google Scholar 

  187. Gu J, Xin Z, Tao M, Lv Y-H, Gao W-L, Si Q (2019) Effect of reflux digestion time on MoO3/ZrO2 catalyst for sulfur-resistant CO methanation. Fuel 241:129–137

    Article  CAS  Google Scholar 

  188. Zhang B-L, Zhang S-G, Liu B, Shen H-L, Li L (2018) High N2 selectivity in selective catalytic reduction of NO with NH3 over Mn/Ti-Zr catalysts. RSC Adv 8:12733–12741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gao E, Sun G, Zhang W, Bernards MT, He Y, Pan H, Shi Y (2020) Surface lattice oxygen activation via zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1-xCr2O4 catalysts for enhanced NH3-SCR performance. Chem Eng J (Amsterdam, Neth) 380:122397

    CAS  Google Scholar 

  190. Zhang H-L, Hu W, Zhou C-X, Liu H-R, Yao P, Wang J-L, Chen Y-Q (2018) A new understanding of CeO2-ZrO2 catalysts calcinated at different temperatures: reduction property and soot-O2 reaction. Appl Catal A 563:204–215

    Article  CAS  Google Scholar 

  191. Dong X-S, Li F, Zhao N, Tan Y-S, Wang J-W, Xiao F-K (2017) CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Chin J Catal 38:717–725

    Article  CAS  Google Scholar 

  192. Ramos JM, Wang J-A, Flores SO, Chen L-F, Nava N, Navarrete J, Domínguez JM, Szpunar JA (2020) Ultrasound-assisted synthesis and catalytic activity of mesostructured FeOx/SBA-15 and FeOx/Zr-SBA-15 catalysts for the oxidative desulfurization of model diesel. Catal Today 349:198–209

    Article  CAS  Google Scholar 

  193. Ashok J, Ang ML, Kawi S (2017) Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: influence of preparation methods. Catal Today 281:304–311

    Article  CAS  Google Scholar 

  194. Ding W-T, Li H, Zong R, Jiang J-Y, Tang X-F (2021) Controlled hydrodeoxygenation of biobased ketones and aldehydes over an alloyed Pd-Zr catalyst under mild conditions. ACS Sustain Chem Eng 9:3498–3508

    Article  CAS  Google Scholar 

  195. Cai F-F, Jin F-K, Hao J, Xiao G-M (2019) Selective hydrogenolysis of glycerol to 1,2-propanediol on Nb-modified Pd-Zr-Al catalysts. Catal Commun 131:105801–105806

    Article  CAS  Google Scholar 

  196. Ishikawa S, Jones DR, Iqbal S, Reece C, Morgan DJ, Willock DJ, Miedziak PJ, Bartley JK, Edwards JK, Murayama T, Ueda W, Hutchings GJ (2017) Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chem 19:225–236

    Article  CAS  Google Scholar 

  197. Wang W-W, Qu Z-P, Song L-X, Fu Q (2020) Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal 382:129–140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (nos. 21802040, 21676076, 21725602, 21878071, 21971060), the Innovation Team of Huxiang High-level Talent Gathering Engineering (2021RC5028), the Natural Science Foundation of Changsha (kq2004008), Hu-Xiang High Talent of Hunan Province (2018RS3042), and the Recruitment Program for Foreign Experts of China (WQ20164300353) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilong Tang, Akihiro Orita or Renhua Qiu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhao, Y., Yang, T. et al. Zirconium-Based Catalysts in Organic Synthesis. Top Curr Chem (Z) 380, 41 (2022). https://doi.org/10.1007/s41061-022-00396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00396-4

Keywords

Navigation