Skip to main content
Log in

Evaluation of the catalytic activity of borax and its calcined derivatives for pyrolytic valorization of waste tire tube rubber for production of oil and gases

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Borax and its calcined derivatives were used in pyrolytic valorization of tire tube rubber to produce high value oil and gases. This work involved the preparation and characterization of catalysts and optimization of the reaction parameters for the catalytic and non-catalytic pyrolysis of waste tire tube rubber. The derivatives of borax catalyst were prepared by calcining it at 600 °C, 800 °C and 1000 °C. The borax derivatives were labeled as borax-600, borax-800 and borax-1000 and used for the pyrolysis of waste rubber. The outcomes of the catalytic and thermal pyrolysis processes were compared to check the effectiveness of the borax derivatives as a catalyst. Both processes produced different quantities of oil, gas and char specifically in case of borax catalyzed and borax-1000 catalyzed reactions. The oil product of thermal pyrolysis was composed of 15 compounds while borax catalyzed pyrolysis produced oil with 14 compounds. On the other hand, all borax derivatives produced oil having nine compounds. The oil contained aliphatic and cyclic hydrocarbons along with small quantities of sulfur and phosphorous containing organic compounds. The results of distillation showed that thermal pyrolysis produced 83.80% volatile oil while borax catalyzed pyrolysis produced 83.84% volatile oil. The oil content decreased to 66.34% with an increase in borax calcination temperature. Similarly, thermal pyrolysis produced 12.56% residue while borax catalyzed reaction produced 16.10% residue. The residue decreased slightly with a rise in calcination temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in the paper is available from the corresponding author on request.

References

  1. Nuzaimah M, Sapuan SM, Nadlene R, Jawaid M (2018) Recycling of waste rubber as fillers: a review. Mater Sci Eng 368:012016. https://doi.org/10.1088/1757-899X/368/1/012016

    Article  Google Scholar 

  2. Ding K, Zhong Z, Zhang B, Wang J, Min A, Ruan R (2016) Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. J Anal Appl Pyrolysis 122:55–63. https://doi.org/10.1016/j.jaap.2016.10.023

    Article  CAS  Google Scholar 

  3. Rathsack P, Riedewald F, Sousa-Gallagher M (2015) Analysis of pyrolysis liquid obtained from whole tyre pyrolysis with molten zinc as the heat transfer media using comprehensive gas chromatography mass spectrometry. J Anal Appl Pyrolysis 116:49–57. https://doi.org/10.1016/j.jaap.2015.10.007

    Article  CAS  Google Scholar 

  4. Yang Q, Yu S, Zhong H, Liu T, Yao E, Zhang Y, Zou H, Du W (2021) Gas products generation mechanism during co-pyrolysis of styrene–butadiene rubber and natural rubber. J Hazard Mater 401:123302. https://doi.org/10.1016/j.jhazmat.2020.123302

    Article  CAS  PubMed  Google Scholar 

  5. Milani G, Milani F (2018) Quasi-analytical kinetic model for natural rubber and polybutadiene rubber blends. Reac Kinet Mech Cat 123:351–365

    Article  CAS  Google Scholar 

  6. Isahak WNRW, Hisham MW, Yarmo MA, Hin TYY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16(8):5910–5923. https://doi.org/10.1016/j.rser.2012.05.039

    Article  CAS  Google Scholar 

  7. Luo S, Feng Y (2017) The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag. Energy Convers Manag 136:27–35. https://doi.org/10.1016/j.enconman.2016.12.076

    Article  CAS  Google Scholar 

  8. Duan D, Zhang Y, Wang Y, Lei H, Wang Q, Ruan R (2020) Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soap stock over corn cob-derived activated carbons. Energy 209:118454. https://doi.org/10.1016/j.energy.2020.118454

    Article  CAS  Google Scholar 

  9. Shah J, Jan MR, Mabood F (2009) Recovery of value-added products from the catalytic pyrolysis of waste tyre. Energy Convers Manag 50(4):991–994. https://doi.org/10.1016/j.enconman.2008.12.017

    Article  CAS  Google Scholar 

  10. Yu J, Liu S, Cardoso A, Han Y, Bikane K, Sun L (2019) Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu. Energy 188:116117. https://doi.org/10.1016/j.energy.2019.116117

    Article  CAS  Google Scholar 

  11. Qu B, Li A, Qu Y, Wang T, Zhang Y, Wang X, Gao Y, Fu W, Ji G (2020) Kinetic analysis of waste tire pyrolysis with metal oxide and zeolitic catalysts. J Anal Appl Pyrolysis 152:104949. https://doi.org/10.1016/j.jaap.2020.104949

    Article  CAS  Google Scholar 

  12. Hijazi A, Boyadjian C, Ahmad MN, Zeaiter J (2018) Solar pyrolysis of waste rubber tires using photoactive catalysts. Waste Manag 77:10–21. https://doi.org/10.1016/j.wasman.2018.04.044

    Article  CAS  PubMed  Google Scholar 

  13. Singh MV (2020) Conversions of waste tube-tyres (WTT) and waste polypropylene (WPP) into diesel fuel through catalytic pyrolysis using base SrCO3. Eng Sci 13:87–97. https://doi.org/10.30919/es8d1158

    Article  CAS  Google Scholar 

  14. Demirbas A, Al-Sasi BO, Nizami AS (2016) Conversion of waste tires to liquid products via sodium carbonate catalytic pyrolysis. Energy Source A 38(16):2487–2493. https://doi.org/10.1080/15567036.2015.1052598

    Article  CAS  Google Scholar 

  15. Wang J, Jiang J, Wang X, Liu P, Li J, Liu G, Wang K, Li M, Zhong Z, Xu J, Ragauskas AJ (2019) Catalytic conversion of rubber wastes to produce aromatic hydrocarbons over USY zeolites: effect of SiO2/Al2O3 mole ratio. Energy Convers Manag 197:111857. https://doi.org/10.1016/j.enconman.2019.111857

    Article  CAS  Google Scholar 

  16. Salmasi SSZ, Abbas-Abadi MS, Haghighi MN, Abedini H (2015) The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber. Fuel 160:544–548. https://doi.org/10.1016/j.fuel.2015.07.091

    Article  CAS  Google Scholar 

  17. Elordi G, Olazar M, Aguado R, Lopez G, Arabiourrutia M, Bilbao J (2007) Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. J Anal Appl Pyrolysis 79(1–2):450–455. https://doi.org/10.1016/j.jaap.2006.11.010

    Article  CAS  Google Scholar 

  18. Tekin K, Akalın MK, Bektaş S, Karagöz S (2013) Hydrothermal wood processing using borax decahydrate and sodium borohydride. J Anal Appl Pyrolysis 104:68–72. https://doi.org/10.1016/j.jaap.2013.09.008

    Article  CAS  Google Scholar 

  19. Yüceda E, Durak H (2019) Bio-oil and bio-char from Lactuca serriola: significance of catalyst and temperature for assessing yield and quality of pyrolysis. Energy Source A. https://doi.org/10.1080/15567036.2019.1645765

    Article  Google Scholar 

  20. Wang Z, Qu L, Qian J, He Z, Yi S (2019) Effects of the ultrasound-assisted pretreatments using borax and sodium hydroxide on the physicochemical properties of Chinese fir. Ultrason Sonochem 50:200–207. https://doi.org/10.1016/j.ultsonch.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  21. Durak H (2016) Pyrolysis of Xanthium strumarium in a fixed bed reactor: effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Source A 38(10):1400–1409. https://doi.org/10.1080/15567036.2014.947446

    Article  CAS  Google Scholar 

  22. Xu Q, Ma X, Yu Z, Cai Z (2014) A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry. Appl Therm Eng 73(1):357–361. https://doi.org/10.1016/j.applthermaleng.2014.07.068

    Article  CAS  Google Scholar 

  23. Jeong K, Jeong HJ, Lee G, Kim SH, Kim KH, Yoo CG (2020) Catalytic effect of alkali and alkaline earth metals in lignin pyrolysis: a density functional theory study. Energy Fuels 34(8):9734–9740. https://doi.org/10.1021/acs.energyfuels.0c01897

    Article  CAS  Google Scholar 

  24. Giudicianni P, Gargiulo V, Grottola CM, Alfè M, Ragucci R (2018) Effect of alkali metal ions presence on the products of xylan steam assisted slow pyrolysis. Fuel 216:36–43. https://doi.org/10.1016/j.fuel.2017.11.150

    Article  CAS  Google Scholar 

  25. Waclawska I (1995) Thermal decomposition of borax. J Therm Anal Calorim 43(1):261–269. https://doi.org/10.1007/BF02635993

    Article  CAS  Google Scholar 

  26. He L, Szopinski D, Wu Y, Luinstra GA, Theato P (2015) Toward self-healing hydrogels using one-pot thiol–ene click and borax-diol chemistry. ACS Macro Lett 4(7):673–678. https://doi.org/10.1021/acsmacrolett.5b00336

    Article  CAS  Google Scholar 

  27. Molla A, Hussain S (2014) Borax catalyzed domino reactions: synthesis of highly functionalised pyridines, dienes, anilines and dihydropyrano [3, 2-c] chromenes. RSC Adv 4(56):29750–29758. https://doi.org/10.1039/C4RA03627A

    Article  CAS  Google Scholar 

  28. Sahin O, Bulutcu AN (2003) Evaluation of thermal decomposition kinetics of borax pentahydrate using genetic algorithm method by isothermal analysis. Turk J Chem 27:197–207

    CAS  Google Scholar 

  29. Mkhize NM, Van der Gryp P, Danon B, Görgens JF (2016) Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. J Anal Appl Pyrolysis 120:314–320. https://doi.org/10.1016/j.jaap.2016.04.019

    Article  CAS  Google Scholar 

  30. Barbooti MM, Mohamed TJ, Hussain AA, Abas FO (2014) Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere. J Anal Appl Pyrolysis 72(1):165–170. https://doi.org/10.1016/j.jaap.2004.05.001

    Article  CAS  Google Scholar 

  31. Miranda M, Pinto F, Gulyurtlu I, Cabrita I (2013) Pyrolysis of rubber tyre wastes: a kinetic study. Fuel 103:542–552. https://doi.org/10.1016/j.fuel.2012.06.114

    Article  CAS  Google Scholar 

  32. Shaaban A, Se SM, Dimin MF, Juoi JM, Husin MHM, Mitan NMM (2014) Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J Anal Appl Pyrolysis 107:31–39. https://doi.org/10.1016/j.jaap.2014.01.021

    Article  CAS  Google Scholar 

  33. Inguanzo M, Domınguez A, Menéndez JA, Blanco CG, Pis JJ (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal Appl Pyrolysis 63(1):209–222. https://doi.org/10.1016/S0165-2370(01)00155-3

    Article  CAS  Google Scholar 

  34. Mohamed BA, Ellis N, Kim CS, Bi X (2019) Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal B 253:226–234. https://doi.org/10.1016/j.apcatb.2019.04.058

    Article  CAS  Google Scholar 

  35. López A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl Catal B 104(3–4):211–219. https://doi.org/10.1016/j.apcatb.2011.03.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the efforts of King Khalid University, Saudi Arabia (Deanship of Scientific Research) for support through the Research Groups Project under the Grant Number (R.G.P.2/169/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Naz.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest regarding publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Hussain, Z., Hussain, K. et al. Evaluation of the catalytic activity of borax and its calcined derivatives for pyrolytic valorization of waste tire tube rubber for production of oil and gases. Reac Kinet Mech Cat 134, 883–901 (2021). https://doi.org/10.1007/s11144-021-02108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02108-3

Keywords

Navigation