Skip to main content
Log in

Preparation of a zinc-based metal–organic framework (MOF-5)/BiOBr heterojunction for photodegradation of Rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the MOF-5/BiOBr photocatalyst with microsphere structure was synthesized by hydrothermal method for the first time. The crystal structure, morphology, photoelectric performance and photocatalytic activity of the samples were characterized by XRD, SEM, TEM, XPS and electrochemistry. The results show that the synthesized MOF-5/BiOBr photocatalyst exhibits better photocatalytic performance than pure MOF-5 and BiOBr under simulated sunlight. The efficiency of Rhodamine B (RhB) removal based MOF-5/BiOBr composite (MOF-5 with mass ratio of MOF-5/BiOBr = 20 wt% of) reached 99.7%. The possible photocatalytic mechanism is discussed through the capture experiment of active species. The enhanced photocatalytic performance of the MOF-5/BiOBr composite may be related to the interaction between BiOBr and MOF-5 and the type II charge transfer path. The catalyst has simple preparation process, low cost, high activity under natural light, and high efficiency, and is expected to play a role in the treatment of environmental wastewater. This work provides a new insight for designing MOF-5 based photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pirhashemi M, Habibi-Yangjeh A, Rahim Pouran S (2018) Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J Ind Eng Chem 62:1–25. https://doi.org/10.1016/j.jiec.2018.01.012

    Article  CAS  Google Scholar 

  2. Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A (2018) Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit Rev Environ Sci Technol 48:806–857. https://doi.org/10.1080/10643389.2018.1487227

    Article  CAS  Google Scholar 

  3. Akhundi A, Habibi-Yangjeh A, Abitorabi M, Rahim Pouran S (2019) Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev 61:595–628. https://doi.org/10.1080/01614940.2019.1654224

    Article  CAS  Google Scholar 

  4. Zhang J, Yuan X, Si M, Jiang L, Yu H (2020) Core-shell structured cadmium sulfide nanocomposites for solar energy utilization. Adv Colloid Interface Sci 282:102209. https://doi.org/10.1016/j.cis.2020.102209

    Article  CAS  PubMed  Google Scholar 

  5. Liu D, Huang Z, Li M, Li X, Sun P, Zhou L (2020) Construction of magnetic bifunctional beta-cyclodextrin nanocomposites for adsorption and degradation of persistent organic pollutants. Carbohydr Polym 230:115564. https://doi.org/10.1016/j.carbpol.2019.115564

    Article  CAS  PubMed  Google Scholar 

  6. Camargo-Perea AL, Rubio-Clemente A, Peñuela GA (2020) Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water. https://doi.org/10.3390/w12041068

    Article  Google Scholar 

  7. Ling L, Feng Y, Li H, Chen Y, Wen J, Zhu J, Bian Z (2019) Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl Surf Sci 483:772–778. https://doi.org/10.1016/j.apsusc.2019.04.039

    Article  CAS  Google Scholar 

  8. An W, Tian L, Hu J, Liu L, Cui W, Liang Y (2020) Efficient degradation of organic pollutants by catalytic ozonation and photocatalysis synergy system using double-functional MgO/g-C3N4 catalyst. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147518

    Article  Google Scholar 

  9. Zhang J, Yuan X, Jiang L, Wu Z, Chen X, Wang H, Wang H, Zeng G (2018) Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer. J Colloid Interface Sci 511:296–306. https://doi.org/10.1016/j.jcis.2017.09.083

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, He J, Zhu Y, Zhang H, Yang C, Wang K, Wu S-c, Chueh Y-L, Jiang W (2020) Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (0 0 1) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145927

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang K, Zhang Y, Liu L, Lu N, Zhang Z (2019) BiOBr nanosheets-decorated TiO2 nanofibers as hierarchical p–n heterojunctions photocatalysts for pollutant degradation. J Mater Sci 54:8426–8435. https://doi.org/10.1007/s10853-019-03466-z

    Article  CAS  Google Scholar 

  12. Zhang J, Yan M, Yuan X, Si M, Jiang L, Wu Z, Wang H, Zeng G (2018) Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation. J Colloid Interface Sci 529:11–22. https://doi.org/10.1016/j.jcis.2018.05.109

    Article  CAS  PubMed  Google Scholar 

  13. Si M, Zhang J, He Y, Yang Z, Yan X, Liu M, Zhuo S, Wang S, Min X, Gao C, Chai L, Shi Y (2018) Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose. Green Chem 20:3414–3419. https://doi.org/10.1039/c8gc00744f

    Article  CAS  Google Scholar 

  14. Sheng Y, Wei Z, Miao H, Yao W, Li H, Zhu Y (2019) Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem Eng J 370:287–294. https://doi.org/10.1016/j.cej.2019.03.197

    Article  CAS  Google Scholar 

  15. Ai Z, Shao Y, Chang B, Zhang L, Shen J, Wu Y, Huang B, Hao X (2019) Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118077

    Article  Google Scholar 

  16. Yuan X, Zhang J, Yan M, Si M, Jiang L, Li Y, Yu H, Zhang J, Zeng G (2019) Nitrogen doped carbon quantum dots promoted the construction of Z-scheme system with enhanced molecular oxygen activation ability. J Colloid Interface Sci 541:123–132. https://doi.org/10.1016/j.jcis.2019.01.072

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Si M, Jiang L, Yuan X, Yu H, Wu Z, Li Y, Guo J (2021) Core-shell Ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: synergism of molecular oxygen activation and surface plasmon resonance. Chem Eng J. https://doi.org/10.1016/j.cej.2020.128336

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li R, Liu J, Zhang X, Wang Y, Wang Y, Zhang C, Zhang X, Fan C (2018) Iodide-modified Bi4O5Br2 photocatalyst with tunable conduction band position for efficient visible-light decontamination of pollutants. Chem Eng J 339:42–50. https://doi.org/10.1016/j.cej.2018.01.109

    Article  CAS  Google Scholar 

  19. Rashid J, Abbas A, Chang LC, Iqbal A, Haq IU, Rehman A, Awan SU, Arshad M, Rafique M, Barakat MA (2019) Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci Total Environ 665:668–677. https://doi.org/10.1016/j.scitotenv.2019.02.145

    Article  CAS  PubMed  Google Scholar 

  20. Jia T, Wu J, Xiao Y, Liu Q, Wu Q, Qi Y, Qi X (2021) Self-grown oxygen vacancies-rich CeO2/BiOBr Z-scheme heterojunction decorated with rGO as charge transfer channel for enhanced photocatalytic oxidation of elemental mercury. J Colloid Interface Sci 587:402–416. https://doi.org/10.1016/j.jcis.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Bijanzad K, Tadjarodi A, Akhavan O, Khiavi MM (2015) Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates. Res Chem Intermed 42:2429–2447. https://doi.org/10.1007/s11164-015-2159-2

    Article  CAS  Google Scholar 

  22. Huo Y, Zhang J, Miao M, Jin Y (2012) Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances. Appl Catal B 111–112:334–341. https://doi.org/10.1016/j.apcatb.2011.10.016

    Article  CAS  Google Scholar 

  23. Cao L, Ma D, Zhou Z, Xu C, Cao C, Zhao P, Huang Q (2019) Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem Eng J 368:212–222. https://doi.org/10.1016/j.cej.2019.02.100

    Article  CAS  Google Scholar 

  24. Jia Y, Liu P, Wang Q, Wu Y, Cao D, Qiao QA (2021) Construction of Bi2S3-BiOBr nanosheets on TiO2 NTA as the effective photocatalysts: pollutant removal, photoelectric conversion and hydrogen generation. J Colloid Interface Sci 585:459–469. https://doi.org/10.1016/j.jcis.2020.10.027

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Ivanenko A, Meng X, Zhang Z (2019) Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors. J Hazard Mater 380:120822. https://doi.org/10.1016/j.jhazmat.2019.120822

    Article  CAS  PubMed  Google Scholar 

  26. Tie W, Du Z, Yue H, Sarathi Bhattacharyya S, Zheng Z, He W, Hee Lee S (2020) Self-assembly of carbon nanotube/graphitic-like flake/BiOBr nanocomposite with 1D/2D/3D heterojunctions for enhanced photocatalytic activity. J Colloid Interface Sci 579:862–871. https://doi.org/10.1016/j.jcis.2020.06.088

    Article  CAS  PubMed  Google Scholar 

  27. Sun J, Li X, Zhao Q, Liu B (2021) Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed 001 facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.119478

    Article  Google Scholar 

  28. Jia X, Han Q, Liu H, Li S, Bi H (2020) A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−Br heterojunction with enhanced visible-light photocatalytic activity. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125701

    Article  Google Scholar 

  29. Wang Y, Wang K, Wang J, Wu X, Zhang G (2020) Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. J Mater Sci Technol 56:236–243. https://doi.org/10.1016/j.jmst.2020.03.039

    Article  Google Scholar 

  30. Huang X, Deng Q, Liao H, Deng H, Jiang J, Zhang L, Yao X (2021) Synthesis of recyclable 3D LC/h-ZIF-8 by Zn(II) containing wastewater for photocatalytic degradation of mixed-dye under UV-Vis irradiation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104978

    Article  Google Scholar 

  31. Tong Y-Y, Li Y-F, Sun L, Yang R, Zhang S, Fu Y, Cao L, Chen R (2020) The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117142

    Article  Google Scholar 

  32. Zhang X, Chen Z, Luo Y, Han X, Jiang Q, Zhou T, Yang H, Hu J (2021) Construction of NH2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient photocatalytic H2 evolution. J Hazard Mater 405:124128. https://doi.org/10.1016/j.jhazmat.2020.124128

    Article  CAS  PubMed  Google Scholar 

  33. Tu Y, Ling L, Li Q, Long X, Liu N, Li Z (2020) Greatly enhanced photocatalytic activity over Bi2WO6 by MIL-53(Fe) modification. Opt Mater. https://doi.org/10.1016/j.optmat.2020.110500

    Article  Google Scholar 

  34. Sadeghian S, Pourfakhar H, Baghdadi M, Aminzadeh B (2021) Application of sand particles modified with NH2-MIL-101(Fe) as an efficient visible-light photocatalyst for Cr(VI) reduction. Chemosphere 268:129365. https://doi.org/10.1016/j.chemosphere.2020.129365

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Yu Z, Jiang R, Hou Y, Huang J, Zhu H, Yang F, Li M, Li F, Ran Q (2021) Metal organic frameworks constructed heterojunction with α-NiS-β-NiS/CdS: The effect of organic-ligand in UiO-66 for charge transfer of photocatalytic hydrogen evolution. Renew Energy 168:1112–1121. https://doi.org/10.1016/j.renene.2020.12.102

    Article  CAS  Google Scholar 

  36. Aleksandrzak M, Sielicki K, Mijowska E (2020) Enhancement of photocatalytic hydrogen evolution with catalysts based on carbonized MOF-5 and g-C3N4. RSC Adv 10:4032–4039. https://doi.org/10.1039/c9ra08388j

    Article  CAS  Google Scholar 

  37. Cui L, Zou X, Liu Y, Li X, Jiang L, Li C, Yang L, Yu M, Wang Y (2020) Dramatic enhancement of photocatalytic H2 evolution over hydrolyzed MOF-5 coupled Zn0.2Cd0.8S heterojunction. J Colloid Interface Sci 577:233–241. https://doi.org/10.1016/j.jcis.2020.05.023

    Article  CAS  PubMed  Google Scholar 

  38. Younis SA, Serp P, Nassar HN (2020) Photocatalytic and biocidal activities of ZnTiO2 oxynitride heterojunction with MOF-5 and g-C3N4: a case study for textile wastewater treatment under direct sunlight. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124562

    Article  PubMed  Google Scholar 

  39. Jabbar A, Fiaz M, Rani S, Ashiq MN, Athar M (2020) Incorporation of CuO/TiO2 nanocomposite into MOF-5 for enhanced oxygen evolution reaction (OER) and photodegradation of organic dyes. J Inorg Organomet Polym Mater 30:4043–4052. https://doi.org/10.1007/s10904-020-01550-5

    Article  CAS  Google Scholar 

  40. Zhang C, Fei W, Wang H, Li N, Chen D, Xu Q, Li H, He J, Lu J (2020) p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J Hazard Mater 399:123109. https://doi.org/10.1016/j.jhazmat.2020.123109

    Article  CAS  PubMed  Google Scholar 

  41. Jeong YC, Seo JW, Kim JH, Nam S, Shin MC, Cho YS, Byeon JS, Park CR, Yang SJ (2019) Function-regeneration of non-porous hydrolyzed-MOF-derived materials. Nano Res 12:1921–1930. https://doi.org/10.1007/s12274-019-2459-8

    Article  CAS  Google Scholar 

  42. Lin L, Huang M, Long L, Sun Z, Zheng W, Chen D (2014) Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance. Ceram Int 40:11493–11501. https://doi.org/10.1016/j.ceramint.2014.03.039

    Article  CAS  Google Scholar 

  43. Firoozi M, Rafiee Z, Dashtian K (2020) New MOF/COF hybrid as a robust adsorbent for simultaneous removal of Auramine O and Rhodamine B dyes. ACS Omega 5:9420–9428. https://doi.org/10.1021/acsomega.0c00539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu H, Huang B, Wang H, Yuan X, Jiang L, Wu Z, Zhang J, Zeng G (2018) Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms. J Colloid Interface Sci 522:82–94. https://doi.org/10.1016/j.jcis.2018.03.056

    Article  CAS  PubMed  Google Scholar 

  45. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem Eng J 185–186:91–99. https://doi.org/10.1016/j.cej.2012.01.035

    Article  CAS  Google Scholar 

  46. Yu L, Zhang X, Li G, Cao Y, Shao Y, Li D (2016) Highly efficient Bi2O2CO3 /BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. Appl Catal B 187:301–309. https://doi.org/10.1016/j.apcatb.2016.01.045

    Article  CAS  Google Scholar 

  47. Li J, Yang F, Zhou Q, Ren R, Wu L, Lv Y (2019) A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: fabrication, visible-light photocatalytic activity and degradation mechanism. J Colloid Interface Sci 546:139–151. https://doi.org/10.1016/j.jcis.2019.03.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis and the National Natural Science Foundation of China (No. 21671026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Zhang, J., Zhou, Y. et al. Preparation of a zinc-based metal–organic framework (MOF-5)/BiOBr heterojunction for photodegradation of Rhodamine B. Reac Kinet Mech Cat 134, 1003–1015 (2021). https://doi.org/10.1007/s11144-021-02107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02107-4

Keywords

Navigation