Skip to main content
Log in

Three-dimensional porous cobalt as an efficient catalyst for hydrogen production by NaBH4 hydrolysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, the three-dimensional interconnection porous cobalt (3DP-Co) was successfully prepared by reduction of Co3O4 nano-rods, and then applied as an effective catalyst for NaBH4 hydrolysis to produce hydrogen. The results show that 3DP-Co exhibits a higher catalytic activity for NaBH4 hydrolysis as compared with the micron electrolytic cobalt powder, due to its special nano-porous structure that can provide a high specific surface area and more active sites. Based on the exploration of the effects of hydrolysis conditions on the hydrogen generation property, as much as 865 ml min−1 g−1 of hydrogen generation rate was obtained at 25 °C by using 5 wt% 3DP-Co, 5 wt% NaBH4 and 10 wt% NaOH. Furthermore, the activation energy of the catalytic hydrolysis reaction was calculated to be 42.56 kJ mol−1. This work opens up an effective route for accelerating NaBH4 hydrolysis by using nanoporous metals as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrogen Energy 41(28):12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244

    Article  CAS  Google Scholar 

  2. Netskina OV, Pochtar AA, Komova OV, Simagina VI (2020) Solid-state NaBH4 composites as hydrogen generation material: effect of thermal treatment of a catalyst precursor on the hydrogen generation rate. Catalysts 10(2):201. https://doi.org/10.3390/catal10020201

    Article  CAS  Google Scholar 

  3. Jensen SRH, Jepsen LH, Skibsted J, Jensen TR (2015) Phase diagram for the NaBH4–KBH4 system and the stability of a Na1–xKxBH4 solid solution. J Phys Chem C 119(50):27919–27929. https://doi.org/10.1021/acs.jpcc.5b09851

    Article  CAS  Google Scholar 

  4. Kumar S, Jain A, Miyaoka H, Ichikawa T, Kojima Y (2017) Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int J Hydrogen Energy 42(35):22432–22437. https://doi.org/10.1016/j.ijhydene.2017.02.060

    Article  CAS  Google Scholar 

  5. Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M (2000) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrogen Energy 25(10):969–975. https://doi.org/10.1016/S0360-3199(00)00021-5

    Article  CAS  Google Scholar 

  6. Demirci UB, Miele P (2014) Reaction mechanisms of the hydrolysis of sodium borohydride: a discussion focusing on cobalt-based catalysts. CR Chim 17(7–8):707–716. https://doi.org/10.1016/j.crci.2014.01.012

    Article  CAS  Google Scholar 

  7. Kilinc D, Sahin O (2019) Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. Int J Hydrogen Energy 44(34):18858–18865. https://doi.org/10.1016/j.ijhydene.2018.12.225

    Article  CAS  Google Scholar 

  8. Muir SS, Yao XD (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems. Int J Hydrogen Energy 36(10):5983–5997. https://doi.org/10.1016/j.ijhydene.2011.02.032

    Article  CAS  Google Scholar 

  9. Ali F, Khan SB, Asiri AM (2019) Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. Int J Hydrogen Energy 44(8):4143–4155. https://doi.org/10.1016/j.ijhydene.2018.12.158

    Article  CAS  Google Scholar 

  10. Hao S, Yang LB, Cui L, Lu WB, Yang YC, Sun XP, Asiri AM (2016) Self-supported spinel FeCo2O4 nanowire array: an efficient non-noble-metal catalyst for the hydrolysis of NaBH4 toward on-demand hydrogen generation. Nanotechnology 27(46):4603. https://doi.org/10.1088/0957-4484/27/46/46LT03

    Article  Google Scholar 

  11. Wang Y, Li G, Wu S, Wei YS, Meng W, Xie Y, Cui Y, Lian X, Chen YG, Zhang XY (2017) Hydrogen generation from alkaline NaBH4 solution using nanostructured Co-Ni-P catalysts. Int J Hydrogen Energy 42(26):16529–16537. https://doi.org/10.1016/j.ijhydene.2017.05.034

    Article  CAS  Google Scholar 

  12. Liang ZH, Li QM, Li F, Zhao SD, Xia X (2017) Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2O4 catalyst. Int J Hydrogen Energy 42(7):3971–3980. https://doi.org/10.1016/j.ijhydene.2016.10.115

    Article  CAS  Google Scholar 

  13. Özkar S, Zahmakıran M (2005) Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. J Alloys Compds 404–406:728–731. https://doi.org/10.1016/j.jallcom.2004.10.084

    Article  CAS  Google Scholar 

  14. Ersoz Y, Yildirim R, Akin AN (2007) Development of an active platine-based catalyst for the reaction of H2 production from NaBH4. Chem Eng J 134(1–3):282–287. https://doi.org/10.1016/j.cej.2007.03.059

    Article  CAS  Google Scholar 

  15. Larichev YV, Netskina OV, Komova OV, Simagina VI (2010) Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis. Int J Hydrogen Energy 35(13):6501–6507. https://doi.org/10.1016/j.ijhydene.2010.04.048

    Article  CAS  Google Scholar 

  16. Sagbas S, Sahiner N (2012) A novel p(AAm-co-VPA) hydrogel for the Co and Ni nanoparticle preparation and their use in hydrogel generation from NaBH4. Fuel Process Technol 104:31–36. https://doi.org/10.1016/j.fuproc.2012.06.025

    Article  CAS  Google Scholar 

  17. Kao HY, Lin CC, Hung CJ, Hu CC (2018) Kinetics of hydrogen generation on NaBH4 powders using cobalt catalysts. J Taiwan Inst Chem E 87:123–130. https://doi.org/10.1016/j.jtice.2018.03.022

    Article  CAS  Google Scholar 

  18. Lee J, Shin H, Choi KS, Lee J, Choi J-Y, Yu HK (2019) Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation. Int J Hydrogen Energy 44(5):2943–2950. https://doi.org/10.1016/j.ijhydene.2018.11.218

    Article  CAS  Google Scholar 

  19. Khan SB, Ali F, Asiri AM (2020) Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis. Int J Hydrogen Energy 45(3):1532–1540. https://doi.org/10.1016/j.ijhydene.2019.11.042

    Article  CAS  Google Scholar 

  20. Shen XC, Wang Q, Wu QQ, Guo SQ, Zhang ZY, Sun ZY, Liu BS, Wang ZB (2015) CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy 90(1):464–474. https://doi.org/10.1016/j.energy.2015.07.075

    Article  CAS  Google Scholar 

  21. Coşkuner B, Figen AK, Pişkin S (2013) Solid state preparation and reaction kinetics for Co/B as a catalytic/acidic accelerator for NaBH4 hydrolysis. Reac Kinet Mech Cat 109:375–392. https://doi.org/10.1007/s11144-013-0569-y

    Article  CAS  Google Scholar 

  22. Lee JK, Ann HH, Yi Y, Lee KW, Uhm S, Lee J (2011) A stable Ni-B catalyst in hydrogen generation via NaBH4 hydrolysis. Catal Commun 16(1):120–123. https://doi.org/10.1016/j.catcom.2011.09.015

    Article  CAS  Google Scholar 

  23. Wang FH, Luo YM, Wang YN, Zhu H (2019) The preparation and performance of a novel spherical spider web-like structure Ru Ni/Ni foam catalyst for NaBH4 methanolysis. Int J Hydrogen Energy 44(26):13185–13194. https://doi.org/10.1016/j.ijhydene.2019.01.123

    Article  CAS  Google Scholar 

  24. Hansu TA, Sahin O, Caglar A, Kivrak H (2020) A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. Reac Kinet Mech Cat 131:661–676. https://doi.org/10.1007/s11144-020-01884-8

    Article  CAS  Google Scholar 

  25. Bekirogullari M, Abut S, Duman F, Hansu TA (2021) Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-021-02057-x

    Article  Google Scholar 

  26. Fiorenza R, SciréS VAM (2018) Carbon supported bimetallic Ru-Co catalysts for H2 production through NaBH4 and NH3BH3 hydrolysis. Int J Energy Res 42:1183–1195. https://doi.org/10.1002/er.3918

    Article  CAS  Google Scholar 

  27. Shi L, Chen Z, Jian ZY, Guo FH, Gao CL (2019) Carbon nanotubes-promoted Co–B catalysts for rapid hydrogen generation via NaBH4 hydrolysis. Int J Hydrogen Energy 44(36):19868–19877. https://doi.org/10.1016/j.ijhydene.2019.05.206

    Article  CAS  Google Scholar 

  28. Guo S, Wu Q, Sun J, Chen J, Chen T, Feng M, Wang Q, Wang Z, Zhao B, Ding W (2017) Highly stable and controllable CoB/Ni-foam catalysts for hydrogen generation from alkaline NaBH4 solution. Int J Hydrogen Energy 42(33):21063–21072. https://doi.org/10.1016/j.ijhydene.2017.07.033

    Article  CAS  Google Scholar 

  29. Wang X, Liao J, Li H, Wang H, Wang R, Pollet B, Ji S (2018) Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. Int J Hydrogen Energy 43(37):17543–17555. https://doi.org/10.1016/j.ijhydene.2018.07.147

    Article  CAS  Google Scholar 

  30. Lizárraga R, Pan F, Bergqvist L, Holmström E, Gercsi Z, Vitors L (2017) First principles theory of the hcp-fcc phase transition in cobalt. Sci Rep 7(1):3778. https://doi.org/10.1038/s41598-017-03877-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu BH, Li ZP, Suda S (2006) Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J Alloys Compds 415(1–2):288–293. https://doi.org/10.1016/j.jallcom.2005.08.019

    Article  CAS  Google Scholar 

  32. Npatel N, Patel R, Fernandes R, Miotello A (2010) Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution. J Catal 271(2):315–324. https://doi.org/10.1016/j.jcat.2010.02.014

    Article  CAS  Google Scholar 

  33. Kurtinaitienė M, Žielienė A, Loreta T-T, Selskis A, Jagminas A (2013) Hydrothermal synthesis of Co-Ru alloy particle catalysts for hydrogen generation from sodium borohydride. Adv Mater Sci Eng 2013:489840. https://doi.org/10.1155/2013/489840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52071001), the Scientific Research Foundation of Education Department of Anhui Province of China (No. KJ2020A0253) and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, R., Liu, D. et al. Three-dimensional porous cobalt as an efficient catalyst for hydrogen production by NaBH4 hydrolysis. Reac Kinet Mech Cat 134, 665–675 (2021). https://doi.org/10.1007/s11144-021-02099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02099-1

Keywords

Navigation