Skip to main content
Log in

Controllable synthesis of NixCo3−xO4-rGO with enhanced oxygen reduction/evolution activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 06 November 2021

This article has been updated

Abstract

The composition of nickel cobalt oxide has a great influence on its electrochemical performance. A series of three-dimensional porous honeycomb-like nickel cobalt oxides with different compositions were fabricated by varying the molar ratio of Ni to Co and tested by various characterizations. The electrochemical activity was evaluated by oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The electrochemical measurements showed that the nickel–cobalt oxide with a molar ratio of Ni/Co to be 1:2 demonstrates the superior electrochemical performance with lower onset potential, smaller Tafel slope, higher electron transfer number, longer cycling stability for ORR, lower overpotential for OER, and better overall bifunctional activity. The enhanced performance could be attributed to the synergistic effect of the porous structure, rich defect oxygen, and a proper molar ratio of Ni2+/Ni3+ and Co2+/Co3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Acc. Chem. Res. 50, 915–923 (2017)

    Article  CAS  Google Scholar 

  2. H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28, 1803329 (2018)

    Article  Google Scholar 

  3. C. Chen, Z. Sun, Y. Li, L. Yi, H. Hu, J. Mater. Sci.: Mater. Electron. 28, 12660–12669 (2017)

    CAS  Google Scholar 

  4. J. Hao, Y. Liu, H. Shen, W. Li, J. Li, Y. Li, Q. Chen, J. Mater. Sci.: Mater. Electron. 27, 6598–6605 (2016)

    CAS  Google Scholar 

  5. Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 117, 10121–10211 (2017)

    Article  CAS  Google Scholar 

  6. H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, J. Li, C. Huang, Nanoscale 6, 10235–10242 (2014)

    Article  CAS  Google Scholar 

  7. Y. Huang, F. Cui, Y. Zhao, J. Bao, J. Lian, Y. Xu, T. Liu, H. Li, Chem. Asian J. 12, 2426–2433 (2017)

    Article  CAS  Google Scholar 

  8. D.U. Lee, B.J. Kim, Z. Chen, J. Mater. Chem. A 1, 4754 (2013)

    Article  CAS  Google Scholar 

  9. S. Jiang, K. Ithisuphalap, X. Zeng, G. Wu, H. Yang, J. Power Sources 399, 66–75 (2018)

    Article  CAS  Google Scholar 

  10. L.-L. Wan, G.-L. Zang, X. Wang, L.-A. Zhou, T. Li, Q.-X. Zhou, J. Power Sources 345, 41–49 (2017)

    Article  CAS  Google Scholar 

  11. J. Wang, Z. Wu, L. Han, R. Lin, H.L. Xin, D. Wang, ChemCatChem 8, 736–742 (2016)

    Article  CAS  Google Scholar 

  12. H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong, J. Hou, F. Yu, T. Wei, H. Wang, X. Guo, Electrochim. Acta 296, 719–729 (2019)

    Article  CAS  Google Scholar 

  13. T. Zhu, E.R. Koo, G.W. Ho, RSC Adv. 5, 1697–1704 (2015)

    Article  CAS  Google Scholar 

  14. C. Jin, F. Lu, X. Cao, Z. Yang, R. Yang, J. Mater. Chem. A 1, 12170 (2013)

    Article  CAS  Google Scholar 

  15. W. Liu, J. Bao, L. Xu, M. Guan, Z. Wang, J. Qiu, Y. Huang, J. Xia, Y. Lei, H. Li, Appl. Surf. Sci. 478, 552–559 (2019)

    Article  CAS  Google Scholar 

  16. M. Li, H. Zhang, T. Xiao, B. Zhang, J. Yan, D. Chen, Y. Chen, Electrochim. Acta 258, 1219–1227 (2017)

    Article  CAS  Google Scholar 

  17. S. Lin, X. Shi, H. Yang, D. Fan, Y. Wang, K. Bi, J. Alloy. Compd. 720, 147–155 (2017)

    Article  CAS  Google Scholar 

  18. Z.-Q. Liu, Q.-Z. Xu, J.-Y. Wang, N. Li, S.-H. Guo, Y.-Z. Su, H.-J. Wang, J.-H. Zhang, S. Chen, Int. J. Hydrog. Energy 38, 6657–6662 (2013)

    Article  CAS  Google Scholar 

  19. Y. Liu, P. Liu, W. Qin, X. Wu, G. Yang, Electrochim. Acta 297, 623–632 (2019)

    Article  CAS  Google Scholar 

  20. Y. Liu, Y. Ying, L. Fei, Q. Hu, G. Zhang, S.Y. Pang, W. Lu, C.L. Mak, X. Luo, L. Zhou, M. Wei, H. Huang, J. Am. Chem. Soc. 141, 8136–8145 (2019)

    Article  CAS  Google Scholar 

  21. M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Chem. Eur. J. 24, 13002–13008 (2018)

    Article  CAS  Google Scholar 

  22. J. Bian, X. Cheng, X. Meng, J. Wang, J. Zhou, S. Li, Y. Zhang, C. Sun, ACS Appl. Energy Mater. 2, 2296–2304 (2019)

    Article  CAS  Google Scholar 

  23. P. Sennu, H.S. Park, K.U. Park, V. Aravindan, K.S. Nahm, Y.-S. Lee, J. Catal. 349, 175–182 (2017)

    Article  CAS  Google Scholar 

  24. H. Xue, H. Yu, Y. Li, K. Deng, Y. Xu, X. Li, H. Wang, L. Wang, Nanotechnology 29, 285401 (2018)

    Article  Google Scholar 

  25. W. Wei, L. Mi, S. Cui, B. Wang, W. Chen, ACS Sustain. Chem. Eng. 3, 2777–2785 (2015)

    Article  CAS  Google Scholar 

  26. R. Ding, H. Gao, M. Zhang, J. Zhang, X. Zhang, RSC Adv. 5, 48631–48637 (2015)

    Article  CAS  Google Scholar 

  27. H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, D. Xia, J. Mater. Chem. A 3, 428–437 (2015)

    Article  CAS  Google Scholar 

  28. W. Yang, L. Chen, J. Yang, X. Zhang, C. Fang, Z. Chen, L. Huang, J. Liu, Y. Zhou, Z. Zou, Chem. Commun. 52, 5258–5261 (2016)

    Article  CAS  Google Scholar 

  29. S. Wu, Q. Liu, F. Xue, M. Wang, S. Yang, H. Xu, F. Jiang, J. Wang, J. Mater. Sci.: Mater. Electron. 28, 11615–11623 (2017)

    CAS  Google Scholar 

  30. M. Yao, N. Wang, J. Yin, W. Hu, J. Mater. Sci.: Mater. Electron. 28, 11119–11124 (2017)

    CAS  Google Scholar 

  31. R. Boppella, J. Tan, W. Yang, J. Moon, Adv. Funct. Mater. 29, 1807976 (2018)

    Article  Google Scholar 

  32. D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater. 8, 1701905 (2018)

    Article  Google Scholar 

  33. C. Zhu, S. Fu, D. Du, Y. Lin, Chem. Eur. J. 22, 4000–4007 (2016)

    Article  CAS  Google Scholar 

  34. B. Lan, X. Zheng, G. Cheng, J. Han, W. Li, M. Sun, L. Yu, Electrochim. Acta 283, 459–466 (2018)

    Article  CAS  Google Scholar 

  35. J. Zhao, Y. He, Z. Chen, X. Zheng, X. Han, D. Rao, C. Zhong, W. Hu, Y. Deng, ACS Appl. Mater. Interfaces 11, 4915–4921 (2019)

    Article  CAS  Google Scholar 

  36. J. Wang, R. Gao, D. Zhou, Z. Chen, Z. Wu, G. Schumacher, Z. Hu, X. Liu, ACS Catal. 7, 6533–6541 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21576054); Science and Technology Planning Project of Guangdong Province (2016A010104017); and the Foundation of Higher Education of Guangdong Province (2015KTSCX027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, Z., Xu, H. et al. Controllable synthesis of NixCo3−xO4-rGO with enhanced oxygen reduction/evolution activity. J Mater Sci: Mater Electron 30, 18424–18431 (2019). https://doi.org/10.1007/s10854-019-02196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02196-x

Navigation