Skip to main content
Log in

Co-Ru/MCM-22 catalysts for application in Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The objective of this study was to characterize the zeolite MCM-22 support structure after static hydrothermal preparation, then to prepare a cobalt and ruthenium-based catalyst supported by MCM-22 zeolite via wet impregnation, and finally, to assess the performance of both catalysts in the Fischer–Tropsch reaction with regard to the production of long-chain (C8) hydrocarbons. Cobalt catalysts promoted with ruthenium and supported on MCM-22 were prepared using the co-impregnation method. The MCM-22 zeolite was prepared using a 150 °C hydrothermal treatment for two different lengths of time (9–10 days), under static conditions. The Co-Ru-MCM-22 catalyst was characterized by X-ray diffraction, X-ray energy dispersion spectroscopy, N2 adsorption–desorption, temperature-programmed reduction, scanning electron microscopy, and transmission electron microscopy. The Fischer–Tropsch synthesis was carried out in a slurry reactor using the following operating conditions: 240 °C, 10 and 20 bar, 1:1 CO:H2 molar ratio. X-ray diffractograms showed a well-defined MWW structure for MCM-22. Spherical particles were observed on the scanning electron micrographs. On transmission electron micrographs, it was possible to identity well-dispersed cobalt particles in the Co-MCM-22 catalyst having an average particle size of 33.89 nm. Both Co-Ru/MCM-22(9D) and Co-Ru/MCM-22(10D) were used in the improved FTS in order to study the influence of promoters on the production of hydrocarbons with higher commercial value (> C8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krylova AY (2014) Products of the Fischer-tropsch synthesis (A review). Solid Fuel Chem 48:22–35. https://doi.org/10.3103/S0361521914010030

    Article  CAS  Google Scholar 

  2. Dry ME, Hoogendoorn JC (1981) Technology of the Fischer-Tropsch Process. Catal Rev 23:265–278. https://doi.org/10.1080/03602458108068078

    Article  CAS  Google Scholar 

  3. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  4. Vosloo AC (2001) Fischer–Tropsch: a futuristic view. Fuel Process Technol 71:149–155

    Article  CAS  Google Scholar 

  5. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A Gen 161:59–78. https://doi.org/10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  6. Dalai AK, Davis BH (2008) Fischer-Tropsch synthesis: a review of water effects on the performances of Unsupported and supported Co catalysts. Appl Catal A Gen 348:1–15. https://doi.org/10.1016/j.apcata.2008.06.021

    Article  CAS  Google Scholar 

  7. Van de Loosdrecht J, Botes FG, Cibioca IM, Ferreira A, Gibson P, Moodley DJ, Saib AM, Visagie JL, Weststrate CJ, Niemantsverdriet JW (2013) Comprehensive inorganic chemistry II: from elements to applications. Inorganic Mater Catal 7:525–557

    Google Scholar 

  8. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch. Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  9. Schulz H, Claeys M, Harms S (1997) Effect of water partial pressure on steady state Fischer–Tropsch activity and selectivity of a promoted cobalt catalyst. Stud Surf Sci Catal 107:193–200. https://doi.org/10.1016/s0167-2991(97)80334-5

    Article  CAS  Google Scholar 

  10. Diehl F, Khodakov AY (2009) Promotion of cobalt Fischer–Tropsch catalysts with noble metals: a review. Oil Gas Sci Technol 64:11–24. https://doi.org/10.2516/ogst

    Article  CAS  Google Scholar 

  11. De Beer M, Kunene A, Nabaho D et al (2014) Technical and economic aspects of promotion of cobalt-based Fischer–Tropsch catalysts by noble metals-a review. J South African Inst Min Metall 114:157–165

    Google Scholar 

  12. Parnian MJ, Taheri Najafabadi A, Mortazavi Y et al (2014) Ru promoted cobalt catalyst on γ-Al2O3: influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics. Appl Surf Sci 313:183–195. https://doi.org/10.1016/j.apsusc.2014.05.183

    Article  CAS  Google Scholar 

  13. Jacobs G, Das TK, Zhang YQ, Li JL, Racoillet G, Davis BH (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. https://doi.org/10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

  14. Zhang JL, Chen JG, Ren J, Sun YH (2003) Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis. Appl Catal A 243:121–133. https://doi.org/10.1016/S0926-860X(02)00541-0

    Article  CAS  Google Scholar 

  15. Tavasoli A, Khodadadi A, Mortazavi Y, Sadaghiani K, Ahangari MG (2006) Lowering methane and raising distillates yields in Fischer–Tropsch synthesis by using promoted and unpromoted cobalt catalysts in a dual bed reactor. Fuel Process Technol 87:641–647. https://doi.org/10.1016/j.fuproc.2006.01.010

    Article  CAS  Google Scholar 

  16. Morales F, Weckhuysen BM (2007) Promotion effects in co-based Fischer—Tropsch catalysis. ChemInform 38:2. https://doi.org/10.1002/chin.200702219

    Article  Google Scholar 

  17. Rubin MK, Bala Cynwyd P, Chu P, West DN (1990) Composition of synthetic porous crystalline material, its synthesis and use. Patent Number 4(954):325

    Google Scholar 

  18. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) MCM-22: a molecular sieve with two independent calcined. Science 264:1910–1913

    Article  CAS  Google Scholar 

  19. Pergher SBC, Corma A, Fornés V (2003) Preparación y caracterización de la zeolita MCM-22 y de su precursor laminar. Quim Nova 26:795–802. https://doi.org/10.1590/S0100-40422003000600003

    Article  CAS  Google Scholar 

  20. Marques ALS, Monteiro JLF, Pastore HO (1999) Static crystallization of zeolites MCM-22 and MCM-49. Micropor Mesopor 32:131–145. https://doi.org/10.1016/S1387-1811(99)00099-2

    Article  Google Scholar 

  21. Barbosa AS, Lima LA, Sousa BV, Everton RFS, Rodrigues MGF (2010) Influence of crystallization time on structural and morphological characteristics the precursor of zeolite MCM-22. Mater Sci Forum 660–661:567–572

    Article  Google Scholar 

  22. Ravishankar R, Li MM, Borgna A (2005) Novel utilization of MCM-22 molecular sieves as supports of Cobalt catalysts in the Fischer–Tropsch synthesis. Catal Today 106:149–153. https://doi.org/10.1016/j.cattod.2005.07.123

    Article  CAS  Google Scholar 

  23. Ngamcharussrivichai C, Imyim A, Li X, Fujimoto K (2007) Active and selective bifunctional catalyst for gasoline production through a slurry-phase Fischer–Tropsch synthesis. Ind Eng Chem Res 46:6883–6890. https://doi.org/10.1021/ie070099j

    Article  CAS  Google Scholar 

  24. Hao Q-Q, Lei C-Y, Song Y-H, Liu Z-T, Liu Z-W (2016) The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catal Today 274:109–115. https://doi.org/10.1016/j.cattod.2016.01.042

    Article  CAS  Google Scholar 

  25. Rodrigues JJ, Lima LA, Lima WS, Rodrigues MGF, Fernandes FAN (2011) Fischer–Tropsch synthesis in slurry-phase reactors using Co/SBA-15 catalysts. Braz J Pet Gas 5:149–157. https://doi.org/10.5419/bjpg2011-0015

    Article  Google Scholar 

  26. Sousa BV, Rodrigues MGF, Cano LA, Cagnoli MV, Bengoa JF, Marchetti SG, Pecchi G (2011) Study of the effect of cobalt content in obtaining Olefins and paraffins using the Fischer-Tropsch reaction. Catal Today 172:152–157. https://doi.org/10.1016/j.cattod.2011.02.035

    Article  CAS  Google Scholar 

  27. Rodrigues JJ, Pecchi G, Fernandes FAN, Rodrigues MGF (2012) Ruthenium promotion of Co/SBA-15 catalysts for Fischer–Tropsch synthesis in slurry-phase reactors. J Nat Gas Chem 21:722–728. https://doi.org/10.1016/S1003-9953(11)60425-8

    Article  CAS  Google Scholar 

  28. Rodrigues JJ, Fernandes FAN, Rodrigues MGF (2013) Study of Co/SBA-15 catalysts prepared by microwave and conventional heating methods and application in Fischer–Tropsch synthesis. Appl Catal A Gen 468:32–37. https://doi.org/10.1016/j.apcata.2013.08.035

    Article  CAS  Google Scholar 

  29. Silva VJ, Rodrigues JJ, Soares RR et al (2013) Cobalt supported on ZSM-5 zeolite using kaolin as silicon and aluminun sources for Fischer–Tropsch synthesis. Braz J Pet Gas 7:83–94. https://doi.org/10.5419/bjpg2013-0007

    Article  Google Scholar 

  30. Rodrigues JJ, Fernandes FAN, Rodrigues MGF (2018) Co/Ru/SBA-15 Catalysts synthesized with rice husk ashes as silica source applied in the Fischer-Tropsch synthesis. Braz J Pet Gas 12:169–179. https://doi.org/10.5419/bjpg2018-0016

    Article  Google Scholar 

  31. Rodrigues JJ, Fernandes FAN, Rodrigues MGF (2020) The use of Cobalt/Ruthenium catalyst supported in SBA-15 in the promotion of Fischer–Tropsch synthesis. Brazilian J Pet Gas 14:007–021. https://doi.org/10.5419/bjpg2020-0002

    Article  Google Scholar 

  32. Lawton SL, Leonowicz ME, Partridge RD et al (1998) Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous Mesoporous Mater 23:109–117. https://doi.org/10.1016/S1387-1811(98)00057-2

    Article  CAS  Google Scholar 

  33. Cook KM, Perez HD, Bartholomew CH, Hecker WC (2014) Effect of promoter deposition order on platinum-, ruthenium-, or rhenium-promoted cobalt Fischer-Tropsch catalysts. Appl Catal A Gen 482:275–286. https://doi.org/10.1016/j.apcata.2014.05.013

    Article  CAS  Google Scholar 

  34. Liu Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K (2009) Fischer–Tropsch synthesis in slurry-phase reactors over Mn- and Zr-modified Co/SiO2 catalysts. Fuel Process Technol 90:901–908. https://doi.org/10.1016/j.fuproc.2009.04.004

    Article  CAS  Google Scholar 

  35. Martinez A, López C, Márquez F, Díaz I (2003) Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. J Catal 220:486–499. https://doi.org/10.1016/S0021-9517(03)00289-6

    Article  CAS  Google Scholar 

  36. Fernandes FAN (2006) Modeling and product grade optimization of Fischer−Tropsch synthesis in a slurry reactor. Ind Eng Chem Res 45:1047–1057. https://doi.org/10.1021/ie0507732

    Article  CAS  Google Scholar 

  37. Fontenelle AB, Fernandes FAN (2011) Comprehensive polymerization model for Fischer–Tropsch synthesis. Chem Eng Technol 34:963–971. https://doi.org/10.1002/ceat.201000498

    Article  CAS  Google Scholar 

  38. Cruz MGA, Bastos-Neto M, Oliveira AC, Filho JM, Soares JM, Rodriguez-Castellon E, Fernandes FAN (2015) On the structural, textural and morphological features of Fe-based catalysts supported on polystyrene mesoporous carbon for Fischer–Tropsch synthesis. Appl Catal A Gen 495:72–83. https://doi.org/10.1016/j.apcata.2015.02.009

    Article  CAS  Google Scholar 

  39. dos Santos MB, Andrade HMC, Mascarenhas AJS (2019) Oxidative dehydration of glycerol over alternative H, Fe-MCM-22 catalysts: Sustainable production of acrylic acid. Microporous Mesoporous Mater 278:366–377. https://doi.org/10.1016/j.micromeso.2019.01.016

    Article  CAS  Google Scholar 

  40. Ostroumova V, Maksimov A (2019) MWW-Type Zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (A Review). Pet Chem 59:788–801. https://doi.org/10.1134/S0965544119080140

    Article  CAS  Google Scholar 

  41. Schwanke A, Villarroel-Rocha J, Sapag K et al (2018) Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template. ACS Omega 3:6217–6223. https://doi.org/10.1021/acsomega.8b00647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aloqayli S, Ranaweera CK, Wang Z et al (2017) Nanostructured cobalt oxide and cobalt sulfide for flexible, high performance and durable supercapacitors. Energy Storage Mater 8:68–76. https://doi.org/10.1016/j.ensm.2017.05.006

    Article  Google Scholar 

  43. Ma J, Zhang S, Liu W, Zhao Y (2010) Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder. J Alloys Compd 490:647–651. https://doi.org/10.1016/j.jallcom.2009.10.126

    Article  CAS  Google Scholar 

  44. Rodrigues MGF, Barbosa AS, Coriolano ACF et al (2015) (2015) Evaluation of the acid properties of aluminossilicate MCM-22 material synthesized under static conditions. Mater Sci Pol 33:131–136. https://doi.org/10.1515/msp-2015-0019

    Article  CAS  Google Scholar 

  45. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264:1910–1913. https://doi.org/10.1126/science.264.5167.1910

    Article  CAS  PubMed  Google Scholar 

  46. Chu N, Wang J, Zhang Y et al (2010) Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chem Mater 22:2757–2763. https://doi.org/10.1021/cm903645p

    Article  CAS  Google Scholar 

  47. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  48. Concepcion P, López C, Martinez A, Puntes V (2004) Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction. J Catal 228:321–332. https://doi.org/10.1016/j.jcat.2004.09.011

    Article  CAS  Google Scholar 

  49. Riva R, Miessner H, Vitali R, Piero G (2000) Metal–support interaction in Co/SiO2 and Co/TiO2. Appl Catal A Gen 196:111–123. https://doi.org/10.1016/S0926-860X(99)00460-3

    Article  CAS  Google Scholar 

  50. Aguilar J, Pergher SBC, Detoni C et al (2008) Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catal Today 133–135:667–672. https://doi.org/10.1016/j.cattod.2007.11.057

    Article  CAS  Google Scholar 

  51. Leite RCN, Sousa BV, Rodrigues MGF (2009) Static synthesis and characterization of MCM-22 zeolite applied as additive in fluid catalytic cracking operations. Braz J Pet Gas 3:75–82

    Google Scholar 

  52. Anderson RB, Hall WK, Krieg A, Seligman B (1949) Studies of the Fischer–Tropsch synthesis. V. activities and surface areas of reduced and carburized cobalt catalysts. J Am Chem Soc 71:183–188. https://doi.org/10.1021/ja01169a047

    Article  CAS  Google Scholar 

  53. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206:230–241. https://doi.org/10.1006/jcat.2001.3496

    Article  CAS  Google Scholar 

  54. Madon RJ, Iglesia E (1994) Hydrogen and CO intrapellet diffusion effects in ruthenium-catalyzed hydrocarbon synthesis. J Catal 149:428–437. https://doi.org/10.1006/jcat.1994.1309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful financial support provided by Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), PETROBRAS, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MGFR; Methodology: WSL and PHLQ; Investigation: WSL, PHLQ and FANF; Resources: MGFR; Writing—Original draft preparation: WSL, GMP, LNRP and MGFR; Writing—Review & Editing: MGFR; Supervision: MGFR; Project Administration: MGFR; Funding Acquisition: MGFR.

Corresponding author

Correspondence to Meiry Gláucia Freire Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, W.S., de Paula, G.M., do Nascimento Rocha de Paula, L. et al. Co-Ru/MCM-22 catalysts for application in Fischer–Tropsch synthesis. Reac Kinet Mech Cat 134, 441–458 (2021). https://doi.org/10.1007/s11144-021-02071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02071-z

Keywords

Navigation