Skip to main content
Log in

Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A mathematical model of an amperometric biosensor response for uncompetitive inhibition detection is discussed. The model is based on a system of reaction–diffusion equations containing a nonlinear term related to Michaelis–Menten kinetics of the enzymatic reaction. Two highly accurate and easily accessible analytical methods are used to solve the nonlinear differential equations that describe the diffusion coupled with a reaction term. Semi-analytical expressions for the concentrations of substrate, inhibitor, and product in addition to the corresponding current response are derived. The effects of various parameters such as layer thickness, bulk substrate concentration, Michaelis–Menten constant, maximum reaction velocity on current, and the sensitivity and resistance of a biosensor are investigated. A direct comparison with a numerical solution of the governing system is presented to confirm the accuracy of the derived approximate analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark LC, Champ L (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  2. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541. https://doi.org/10.1016/0956-5663(95)96929-S

    Article  CAS  Google Scholar 

  3. MacArthur BD, Stumpf PS, Oreffo R (2020) From mathematical modeling and machine learning to clinical reality. In: Lanza R, Langer R, Vacanti J, Atala A (eds) Principles of tissue engineering. 5th ed. Academic Press, pp. 37–51. https://doi.org/10.1016/B978-0-12-818422-6.00001-0

  4. Stefanov C, van Staden JF, Stefan-van Staden R-I (2020) Review—Enzymatic and non-enzymatic (bio)sensors based on phthalocyanines. A minireview. ECS J Solid State Sci Technol 9:051012. https://doi.org/10.1149/2162-8777/ab9dc8

    Article  CAS  Google Scholar 

  5. Schulmeister T, Scheller F (1985) Mathematical description of concentration profiles and anodic currents for amperometric two-enzyme electrodes. Anal Chim Acta 171:111–118

    Article  CAS  Google Scholar 

  6. Bourouina M, Ourari A, Bourouina-Bacha S (2008) The effect of membrane permeability on the response of a catechol biosensor. Microchim Acta 163:171–178. https://doi.org/10.1007/s00604-008-0010-9

    Article  CAS  Google Scholar 

  7. Kulys J, Tetianec L (2006) Highly sensitive biosensor for the hydrogen peroxide determination by enzymatic triggering and amplification. Sensors Actuators B 113:755–759. https://doi.org/10.1016/j.snb.2005.07.027

    Article  CAS  Google Scholar 

  8. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3:248–262. https://doi.org/10.3390/s30700248

    Article  CAS  Google Scholar 

  9. Romero MR, Baruzzi AM, Garay F (2012) Mathematical modeling and experimental results of a sandwich-type amperometric biosensor. Sensors Actuators B 162:284–291. https://doi.org/10.1016/j.snb.2011.12.079

    Article  CAS  Google Scholar 

  10. Aziz Abd A (2012) Mathematical modeling of an amperometric glucose sensor: the effect of membrane permeability and selectivity on performance. J Teknol. https://doi.org/10.11113/jt.v51.148

    Article  Google Scholar 

  11. Pyo S, Lee J, Kim W et al (2019) Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv Funct Mater 29:1902484. https://doi.org/10.1002/adfm.201902484

    Article  CAS  Google Scholar 

  12. Teymourian H, Barfidokht A, Wang J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49:7671–7709. https://doi.org/10.1039/d0cs00304b

    Article  CAS  PubMed  Google Scholar 

  13. Croce RA, Vaddiraju S, Papadimitrakopoulos F, Jain FC (2012) Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes. Sensors (Switzerland) 12:13402–13416. https://doi.org/10.3390/s121013402

    Article  CAS  Google Scholar 

  14. Valero E, Varon R, Garcia-Carmona F (1991) A kinetic study of irreversible enzyme inhibition by an inhibitor that is rendered unstable by enzymic catalysis: the inhibition of polyphenol oxidase by l-cysteine. Biochem J 277:869–874. https://doi.org/10.1042/bj2770869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Jamei M, Yeo KR et al (2005) Kinetic values for mechanism-based enzyme inhibition: assessing the bias introduced by the conventional experimental protocol. Eur J Pharm Sci 26:334–340. https://doi.org/10.1016/j.ejps.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  16. Choi B, Rempala GA, Kim JK (2017) Beyond the Michaelis–Menten equation: accurate and efficient estimation of enzyme kinetic parameters. Sci Rep 7:17018. https://doi.org/10.1038/s41598-017-17072-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Šimelevičius D, Baronas R (2010) Computational modelling of amperometric biosensors in the case of substrate and product inhibition. J Math Chem 47:430–445. https://doi.org/10.1007/s10910-009-9581-x

    Article  CAS  Google Scholar 

  18. Achi F, Bourouina-Bacha S, Bourouina M, Amine A (2015) Mathematical model and numerical simulation of inhibition based biosensor for the detection of Hg(II). Sensors Actuators B 207:413–423. https://doi.org/10.1016/j.snb.2014.10.033

    Article  CAS  Google Scholar 

  19. Lee SM, Lee WY (2002) Determination of heavy metal ions using conductometric biosensor based on sol–gel-immobilized urease. Bull Korean Chem Soc 23:1169–1172. https://doi.org/10.5012/bkcs.2002.23.8.1169

    Article  CAS  Google Scholar 

  20. Ganesan S, Saravanakumar K, Rajendran L (2014) Mathematical modeling of multienzyme biosensor system. Int J Comput Math 2014:1–15. https://doi.org/10.1155/2014/694037

    Article  Google Scholar 

  21. Korotcenkov G (2013) Chemical sensors simulation and modeling volume 5: electrochemical sensors. Momentum Press, New York

    Book  Google Scholar 

  22. Baronas R, Ivanauskus F, Kulys J (2010) Mathematical modeling of biosensors. An introduction for chemists and mathematicians. Ser Chem Sensors Biosens. Springer, Heidelberg

    Google Scholar 

  23. Zadeh SMH, Heidarshenas M, Ghalambaz M et al (2020) Numerical modeling and investigation of amperometric biosensors with perforated membranes. Sensors (Switzerland). https://doi.org/10.3390/s20102910

    Article  Google Scholar 

  24. Devi MC, Pirabaharan P, Rajendran L, Abukhaled M (2020) An efficient method for finding analytical expressions of substrate concentrations for different particles in an immobilized enzyme system. React Kinet Mech Catal 130:35–53. https://doi.org/10.1007/s11144-020-01757-0

    Article  CAS  Google Scholar 

  25. Abukhaled M (2013) Variational iteration method for nonlinear singular two-point boundary value problems arising in human physiology. J Math 2013:1–4. https://doi.org/10.1155/2013/720134

    Article  Google Scholar 

  26. Suganya ST, Balaganesan P, Rajendran L, Abukhaled M (2020) Analytical discussion and sensitivity analysis of parameters of magnetohydrodynamic free convective flow in an inclined plate. Eur J Pure Appl Math 13:631–644. https://doi.org/10.29020/nybg.ejpam.v13i3.3730

    Article  Google Scholar 

  27. Selvi MS, Rajendran L, Abukhaled M (2020) Analytical study and parameter-sensitivity analysis of catalytic current at a rotating disk electrode. J Phys Commun 4:105017. https://doi.org/10.1088/2399-6528/abc6b1

    Article  CAS  Google Scholar 

  28. Liao S (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513. https://doi.org/10.1016/S0096-3003(02)00790-7

    Article  Google Scholar 

  29. Chen CL, Liu YC (1998) Solution of two-point boundary-value problems using the differential transformation method. J Optim Theory Appl 99:23–35. https://doi.org/10.1023/A:1021791909142

    Article  Google Scholar 

  30. Abukhaled M, Khuri SA (2020) Efficient numerical treatment of a conductive-radiative fin with temperature-dependent thermal conductivity and surface emissivity. Int J Comput Methods Eng Sci Mech 21:159–168. https://doi.org/10.1080/15502287.2020.1767724

    Article  CAS  Google Scholar 

  31. Abukhaled M, Khuri SA (2021) A fast convergent semi-analytic method for an electrohydrodynamic flow in a circular cylindrical conduit. Int J Appl Comput Math. https://doi.org/10.1007/s40819-021-00974-y

    Article  Google Scholar 

  32. He JH, Wu XH (2006) Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30:700–708. https://doi.org/10.1016/j.chaos.2006.03.020

    Article  Google Scholar 

  33. Georgiev SG, Erhan İM (2020) The Taylor series method and trapezoidal rule on time scales. Appl Math Comput 378:125200. https://doi.org/10.1016/j.amc.2020.125200

    Article  Google Scholar 

  34. Vinolyn Sylvia S, Joy Salomi R, Rajendran L, Abukhaled M (2020) Poisson–boltzmann equation and electrostatic potential around macroions in colloidal plasmas: Taylor series approach. Solid State Technol 63:10090–10106

    Google Scholar 

  35. Arduini F, Amine A (2014) Biosensors based on enzyme inhibition. Adv Biochem Eng Biotechnol 140:299–326. https://doi.org/10.1007/10_2013_224

    Article  CAS  PubMed  Google Scholar 

  36. Enzyme Inhibition (2019) https://chem.libretexts.org/@go/page/165290. Accessed 2 May 2021

  37. Chaplin MF, Bucke C (1990) Enzyme technology. Cambridge University Press, England

    Google Scholar 

  38. Tian G, Sobotka-Briner CD, Zysk J et al (2002) Linear non-competitive inhibition of solubilized human γ-secretase by pepstatin A methylester, L685458, sulfonamides, and benzodiazepines. J Biol Chem 277:31499–31505. https://doi.org/10.1074/jbc.M112328200

    Article  CAS  PubMed  Google Scholar 

  39. Rangelova V (2018) Reversible inhibitor biosensor systems in dynamic mode. J Biosens Bioelectron. https://doi.org/10.4172/2155-6210.1000260

    Article  Google Scholar 

  40. He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262. https://doi.org/10.1016/S0045-7825(99)00018-3

    Article  Google Scholar 

  41. Meena A, Rajendran L (2010) Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—homotopy perturbation approach. J Electroanal Chem 644:50–59. https://doi.org/10.1016/j.jelechem.2010.03.027

    Article  CAS  Google Scholar 

  42. Selvi MSM, Rajendran L, Abukhaled M (2021) Estimation of rolling motion of ship in random beam seas by efficient analytical and numerical approaches. J Mar Sci Appl. https://doi.org/10.1007/s11804-020-00183-x

    Article  Google Scholar 

  43. He J-H, El-Dib YO (2020) Homotopy perturbation method for Fangzhu oscillator. J Math Chem 58:2245–2253. https://doi.org/10.1007/s10910-020-01167-6

    Article  CAS  Google Scholar 

  44. Rezapour B, Fariborzi Araghi MA, Vázquez-Leal H (2020) Application of homotopy perturbation method for dynamic analysis of nanotubes delivering nanoparticles. JVC/J Vib Control. https://doi.org/10.1177/1077546320933478

    Article  Google Scholar 

  45. Zhou JK (1986) Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan

    Google Scholar 

  46. Sepasgozar S, Faraji M, Valipour P (2017) Application of differential transformation method (DTM) for heat and mass transfer in a porous channel. Propuls Power Res 6:41–48. https://doi.org/10.1016/j.jppr.2017.01.001

    Article  Google Scholar 

  47. Ahmad MZ, Alsarayreh D, Alsarayreh A, Qaralleh I (2017) Differential transformation method (DTM) for solving SIS and SI epidemic models. Sains Malaysiana 46:2007–2017. https://doi.org/10.17576/jsm-2017-4610-40

    Article  Google Scholar 

  48. Ebrahimi F, Ghadiri M, Salari E et al (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29:1207–1215. https://doi.org/10.1007/s12206-015-0234-7

    Article  Google Scholar 

  49. Odibat ZM (2008) Differential transform method for solving Volterra integral equation with separable kernels. Math Comput Model 48:1144–1149. https://doi.org/10.1016/j.mcm.2007.12.022

    Article  Google Scholar 

  50. Baronas R, Ivanauskas F, Kulys J (2010) Mathematical modeling of biosensors an introduction for chemists and mathematicians. Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Abukhaled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 458 KB)

Supplementary file2 (DOCX 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra Devi, M., Pirabaharan, P., Rajendran, L. et al. Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis. Reac Kinet Mech Cat 133, 655–668 (2021). https://doi.org/10.1007/s11144-021-02015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02015-7

Keywords

Navigation